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Introduction

@ Can model prevalence (proportion) with logistic regression
@ Cannot model incidence in this way

@ Need to allow for time at risk (exposure)

@ Exposure often measured in person-years

@ Model a rate (incidents per unit time)
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Assumptions

@ There is a rate at which events occur

@ This rate may depend on covariates

@ Rate mustbe >0

@ Expected number of events = rate x exposure
@ Events are independent

@ Then the number of events observed will follow a Poisson
distribution
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Poisson Regression

@ Negative numbers of events are meaningless
@ Model log(rate), so that rate can range from 0 — oo

rate = r (events per unit exposure)
Count = C (Number of events)
ExposureTime = T
C ~ poisson(rT)
E[C] = T
St ey
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. . Example . . Exam
Poisson Regression F Poisson Regression

Goodness of Fit

Constraints Constraints

Other considerations Other considerations

The Poisson Regression Model Parameter Interpretation

log(?) = Bo+BiXxi+ ...+ BpXp @ When x; increases by 1, log(r) increases by g;
Po= @hthixitthoXp @ Therefore, r is multiplied by e’
EIC] = Tr @ As with logistic regression, coefficients are less interesting
— T x @hotBixit. 48X than their exponents
—  los(T)+Bo+B1X1+..+BpXp e &7 is the Incidence Rate Ratio
log(E[C]) = log(T)+ Bo+ B1X1 + ...+ BpXp
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SEHE Poisson Regression g
Goodness of Fit Goodness of Fit

Poisson Regression

Constraints Constraints
Other considerations Other considerations

Poisson Regression in Stata Poisson Regression Example: Doctor’s Study

@ Command poisson will do Poisson regression Smokers Non-smokers

@ Enter the exposure with the option exposure (varname) Qg_e44 Deatgz Personé;ﬁg; Death; Person1-;(e7a$'(s)
@ Can also use offset (1varname), where lvarname is 45-54 104 43:248 12 10:673
the log of the exposure 55-64 206 28,612 28 5,710
@ To obtain Incidence Rate Ratios, use the option irr 65—74 186 12:663 28 2:585
75-84 102 5,317 31 1,462

EETR I EETR I
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Poisson Regression Poisson Regression

Constraints Constraints

Other considerations

Using predict after poisson

Other considerations

. poisson deaths i.agecat i.smokes, exp(pyears) irr

Poisson regression Number of obs = 10
LR chi2(5) = 922.93
Prob > chi2 = 0.0000
Log likelihood = -33.600153 Pseudo R2 = 0.9321
deaths | IRR  Std. Err. z P>z [95% Conf. Intervall Optlons available:
S n (default) expected number of events
45-54 | 4.410584 .8605197 7.61 0.000 3.009011 6.464997 H
55-64 | 13.8392 2.542638 14.30 0.000 9.654328 19.83809 (rate X duratlon Of exposure)
65-74 | 28.51678 5.269878 18.13 0.000 19.85177 40.96395 2 i i
75-84 | 40.45121 7.775511 19.25 0.000 27.75326 58.95885 ir InCIdenCe rate
! xb linear predictor
smokes |
Yes | 1.425519 .1530638 3.30 0.001 1.154984 1.759421
_cons | .0003636 .0000697 -41.30 0.000 .0002497 .0005296
1n(pyears) | 1 (exposure)
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Other considerations Other considerations

Example: predict Goodness of Fit

Poisson Regression

predict pred_n @ Command estat gof compares observed and expected
(from model) counts

A 5 imokers 5 Norr:—smokers @ Can detect whether the Poisson model is reasonable
ge eaths pred n Deaths pred n @ If not could be due to
35-44 32 2r.2 2 6.8 e Systematic part of model poorly specified
45-54 104 98.9 12 17.1 e Random variation not really Poisson
55-64 206 205.3 28 28.7 .
@ Degrees of freedom for test = number of categories of
65—74 186 187.2 28 26.8 b . ber of coefficients i del (includi
75_84 102 1115 31 215 observations - number of coefficients in model (including
_cons)
EoDIMDL0Y EoDIMDL0Y
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Poisson Regression ample '
Goodness of Fit
Constraints

nsiderations

Goodness of Fit Example

estat gof
Deviance goodness-of-fit = 12.13244
Prob > chi2(4) = 0.0164
Pearson goodness—of-fit = 11.15533
Prob > chi2 (4) 0.0249

Introduction
Example

Goodness of Fit
Constraints

Other considerations

Example: Improving fit of the model

Poisson Regression

Poisson Regression

Goodness of Fit
Constraints
Other ¢

Improving the fit of the model

erations

@ If the model fit is poor, it can be improved by:

e Allowing for non-linearity of associations
e Introducing interaction terms
e Including other variables
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poisson deaths i.agecat##i.smokes, exp(pyears) irr

Poisson regression Number of obs = 10
LR chi2(9) = 935.07
Prob > chi2 = 0.0000
Log likelihood = -27.53397 Pseudo R2 0.9444
deaths | IRR Std. Err. z P>|z]| [95% Conf. Interval]
agecat |
45-54 | 10.5631 8.067701 3.09 0.002 2.364153 47.19623
55-64 | 46.07004 33.71981 5.23 0.000 10.97496 193.3901
65-74 | 101.764 74.48361 6.32 0.000 24.24256 427.1789
75-84 | 199.2099 145.3356 7.26 0.000 47.67693 832.3648
|
smokes |
Yes | 5.736637 4.181256 2.40 0.017 1.374811 23.93711
|
agecat#smokes |
45-54fYes | .3728337 .2945619 -1.25 0.212 .0792525 1.753951
55-64f#Yes | .2559409 .1935392 -1.80 0.072 .0581396 1.126697
65-T44Yes | .2363859 .1788334 -1.91 0.057 .0536612 1.041316
75-84#Yes | .1577109 .1194146 -2.44 0.015 .0357565 .6956154
|
_cons | .0001064 .0000753 -12.94 0.000 .0000266 .0004256
In(pyears) | 1 (exposure)

testparm i.agecat#i.smokes

chiz2 ( 4) =
Prob > chi2 =

10.20
0.0372

lincom 1.smokes + 5.age#l.smokes, eform

(1) [deaths]1l.smokes + [deaths]S5.agecat#l.smokes = 0
deaths | exp (b) std. Err z P>|z| [95% Conf. Interval]
,,,,,,,,,,,,, o
(1) | .9047304 .1855513 -0.49 0.625 .6052658 1.35236
estat gof

Deviance goodness-of-fit = .0000694

Prob > chi2(0) = .

1.14e-13

Pearson goodness-of-fit =
Prob > chi2(0) =
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Poisson Regression

Poisson Regression

Constraints
Other

Constraints

Constraint Example

. constraint define 1 3.agecat#l.smokes = 4.agecat#l.smokes

. poisson deaths i.agecat##i.smokes, exp(pyears) irr constr(l)

Poisson regression Number of obs = 10
Wald chi2 (8) = 632.14
@ Can force parameters to be equal to each other or Log likelihood = -27.572645 Prob > chiz =  0.0000
SpeCIfled Value (1) [deaths]3.agecat#1l.smokes - [deaths]4.agecat#l.smokes = 0
@ Can be useful in reducing the number of parameters in a deaths | IR Std. Err. 2 P>lzl  [95% Conf. Interval
,,,,,,,,,,,,,, b
model agecat |
45-54 | 10.5631 8.067701 3.09 0.002 2.364153 47.19623
H HH H H 55-64 | 47.671 34.37409 5.36 0.000 11.60056 195.8978
° Slmpllfles descrlptlon Of mOdeI 65-74 | 98.22765 70.85012 6.36 0.000 23.89324 403.8244
. 75-84 | 199.2099 145.3356 7.26 0.000 47.67693 832.3648
@ Enables goodness of fit test i
smokes |
[+ ] Syntax: Constraint define n varname = Yes | 5.736637 4.181256 2.40 0.017 1.374811 23.93711
|
eXpreSSi on agecat#smokes |
45-54#Yes | .3728337 .2945619 -1.25 0.212 .0792525 1.753951
55-64#Yes | .2461772 .182845 -1.89 0.059 .0574155 1.055521
65-T74#Yes | .2461772 .182845 -1.89 0.059 .0574155 1.055521
CENTRE FOR 75-84#Yes |  .1577109  .1194146 -2.44  0.015 0357565 6956154 CENTRE FOR
EPIDEMIOLOGY | EPIDEMIOLOGY
_cons | .0001064 .0000753 -12.94 0.000 .0000266 .0004256
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Constraint Example Cont. Predicted Numbers from Poisson Regression Model

Poisson Regression

Smokers Non-smokers
estat got Age Observed Pred1 Pred2 Observed Pred1 Pred2
Deviance goodness—of-fit = .0774185 35-44 32 27.2 32.0 2 6.8 2.0
Prob > chiz (1) - 0.7808 45-54 104 98.9 104.0 12 171 12.0
Pearson goodness-of-fit = 0773882 55-64 206 2053 205.0 28 287 290
Prob > chi2 (1) = 0.7809 65-74 186 187.2 187.0 28 26.8 27.0
75-84 102 111.5 102.0 31 21.5 31.0

Pred 1 No Interaction
Pred 2 Interaction & Constraint
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Introduction

. . Example

Poisson Regression F
Goodness of Fit
Constraints

Other considerations

@ May be structural (Exposure = 0, so count had to be 0)

@ Don’t count towards DOF
@ Lead to problems in estimation

e IRR is huge or tiny
e SE is huge
e Confidence interval is undefined

@ Stata may be unable to produce a confidence interval
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Negative Binomial Regression

Negative Binomial Regression

@ Allows for extra variation
@ Assumes a mixture of Poisson variables, with the means
having a given distribution
@ Two possible models:
e Var(Y) = pu(1+9)
e Var(Y) = p(1 + ap)
@ « or ¢ is the overdispersion parameter
@ o =0 or § = 0 gives the Poisson model.

Overdispersion

@ Adding predictors to model may not lead to an adequate fit

@ There may be variation between individuals in rate not
included in model

@ Variance is equal to mean for a Poisson distribution

@ The variation between individuals means there is more
variation than expected: overdispersion

@ If there is overdispersion, standard errors will be too small
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Negative Binomial Regression

Negative Binomial Regression in Stata

@ Command nbreg

@ Syntax similar to poisson

@ Default gives Var(Y) = p(1 + ap)

@ Option dispersion (constant) gives Var(Y) = u(1 + )
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Negative Binomial Regression Example

. poisson deaths i.cohort, exposure (exposure) irr - nbreg deaths i.cohort, exposure(exposure) irr
Poisson regression Number of obs _ 21 Negative binomial regression Number of obs i 21
LR chi2(2) - 49.16 ‘ ) LR chiz(2) = 0.40
Prob > chi2 _ 0.0000 DlspeF51og = mean Prob > chi2 = 0.8171
Log likelihood = -2159.5158 Pseudo R2 - 0.0113 Log likelihood = -131.3799 Pseudo R2 = 0.0015
deaths | TRR  Std. Err. 2z P>z [95% Conf. Intervall deaths | IRR - Std. Err. z Pzl [95% Conf. Intervall
,,,,,,,,,,,,, o
_____________ o
cohort | cohort |
1960-1967 | 7393079 0423859 _5.27 0.000 6607305 82723 1960-1967 | .7651995 .5537904 -0.37 0.712 .1852434 3.160869
1968-1976 |  1.077037  .0635156 1.26  0.208 .959474  1.209005 1968-1976 } -6329298  .4580292  -0.63  0.527 -1532395  2.614209
|
_cons |  .0202523  .0008331 -94.80  0.000 0186836  .0219527 —cons | .1240922  .0635173  -4.08  0.000 -0455042 3384052
1n (exposure) | 1 (exposure) 1n (exposure) J 1 (exposure)
/1lnalpha | .5939963 .2583615 .087617 1.100376
.estat gof T T T T T T T e
alpha | 1.811212 .4679475 1.09157 3.005294
Deviance goodness-of-fit = 4190.689 _ . _ — -
Prob > chi2(18) _ 0.0000 Likelihood-ratio test of alpha=0: chibar2 (01) = 4056.27 Prob>=chibar2 = 0.000
Pearson goodness-of-fit = 15387.67
Prob > chi2 (18) = 0.0000 CENTRE FOR CENTRE FOR
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Log-linear Models
Standardisation

Log-linear Models

1 Line odels €] C ear Models

Additional topics Setting Reference Category for Categorical Variables

Log-Linear Modelling Example

Additional topics Setting R ce Category for Categorical Variables

Log-Linear Models

@ An R x C table is simply a series of counts
@ The counts have two predictor variables (rows and
columns) Outcome Exposure
@ Can fit a Poisson model to such a table Exposed Unexposed
@ Association between two variables is given by the Cases 20 10
interaction between the variables Non-cases 10 20
@ Model: log(p) = Bo + BrXr + BeXc + BreXre OR =4
@ For a2 x 2 table, such a model is exactly equivalent to

logistic regression.
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Log-linear Models
Standardisation
Linear Models
Additional topics Setting Reference egory for Categorical Variables

Log-linear modelling example: stata output

Log-linear Models
Standardisation
Generalized Line
Additional topics Setting Refere gory for Categorical Variables

Direct & Indirect Standardisation

5% Conf. Interva

2340459
074 2340459
011 1.367218

coolm

logist teome exp [fu=freq]
Logistic reg 60
6.80
.0091
Log likelihood = -38.19085 0.0817
outcome | Odds Ratio  Std. Err. 2 Pzl [95% Conf. Interva
exposure | 4 2.19089 2.53  0.011 1.367218 11.7026 CENTRE FOR
EPIDEMIOLOGY
ARTHRITIS

Log-linear Models
Standardisation
Generalized Lin Is
Additional topics Setting r ory for Categorical Variables

Direct Standardisation

Calculate rate in each stratum
Standardised rate = weighted mean of these rates

Weights = proportions of subjects in each stratum of
standard population.

Standardised rate = what rate would be in standard
population if it had the same stratum specific rates as our
population

Different standard = different standardised rate

Can compare directly adjusted rates (adjusted to same
population)

@ Used for comparing rates between populations

@ Assumes covariates differ between populations

@ What would rates be if the covariates were the same ?
e l.e. same proportion of subjects in each stratum
e Proportions from standard population = direct

standardisation
e Proportions from this population = indirect standardisation
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Log-linear Models
Standardisation
Generalized Linear Models
Additional topics Setting Reference Category for Categorical Variables

Indirect Standardisation

@ Per stratum rates are unavailable/unreliable

@ Use known rates from a standard population

@ Weight known rates according to stratum size our
population

@ Produce expected number of events if standard rates apply

i~ Observed _
° Ratio £ cses = SMR
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Log-linear Models
Standardisation
Generalized Linear Models
Additional topics Setting Reference Category for Categorical Variables

Standardisation vs. Adjustment

@ Direct standardisation
e Poisson regression assumes same RR in each stratum
e D.S. assumes different RR in each stratum
e Both give weighted mean RR: weights differ
@ Indirect Standardisation
e Good measure of causal effect in this sample
e Can be useful in e.g. observational study of treatment

effect.
@ Do not compare SMR’s
@ They tell you what happened in observed group.
@ Do not tell you what might happen in a different group.
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Generalized Linear Models
Additional topics Setting Reference Category for Categorical Variables

Components of a GLM

@ You can choose the link function for yourself
@ It should:

e Map —oo to co onto reasonable values for
e Have parameters that are easy to interpret

@ Error distribution is determined by the data
@ Only certain distributions are allowed

Generalized Linear Models
Additional topics Setting Reference Category for Categorical Variables

Generalized Linear Models

@ We have met a number of regression models
@ All have the form:

g(n) = Bo+Bix1+...+ BpXp
Y = p+te

where i is the expected value of Y
¢ has a known distribution (normal, binomial etc)
g() is called the link function
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Log-lin
Standardi
Generalized Linear Models
Additional topics Setting Reference Category for Categorical Variables

Examples of GLM’s

Model Range of Link Error Distribution
Linear Regression —cotooco g(p) =p Normal
Logistic Regression Oto1 9(n)  =log(£;) Binomial
Poisson Regression 0to o g(u) =log(w) Poisson
EAbmmi00t
NERRHS



Generalized Linear Models
Additional topics Setting Reference Category for Categorical Variables

GLM’s in Stata

@ Command glm

@ Option family () sets the error distribution

@ Option 1ink () sets the link function

@ There are more options to predict after glm

Eg glm yvar xvars, family(binomial) link (logit)
is equivalent 10 1logistic yvar xvars
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Generalized Linear Models
Additional topics Setting Reference Category for Categorical Variables

Setting Reference Category for Categorical Variables:
Old Way

char variable[omit] #

char Characteristic
variable Name of variable to set reference category for
# Value of reference category

eralized Linear Models
Additional topics Setting Reference Category for Categorical Variables

Setting Reference Category for Categorical Variables:
New Way

For one model ib#.varname
Permanently fvset base # varname
Alternatives to # first

last

frequent
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