Statistical Modelling with Stata: Binary Outcomes

Mark Lunt

Centre for Epidemiology Versus Arthritis University of Manchester

Cross-tabulation

	Exposed	Unexposed	Total				
Cases	а	b	a + b				
Controls	С	d	c + d				
Total	a + c	b + d	a+b+c+d				

- Simple random sample: fix a + b + c + d
- Exposure-based sampling: fix a + c and b + d
- Outcome-based sampling: fix a + b and c + d

The χ^2 Test

- Compares observed to expected numbers in each cell
- Expected under null hypothesis: no association
- Works for any of the sampling schemes
- Says that there is a difference, not what the difference is

Measures of Association

Relative Risk =
$$\frac{\frac{a}{a+c}}{\frac{b}{b+d}} == \frac{a(b+d)}{b(a+c)}$$
Risk Difference = $\frac{a}{a+c} - \frac{b}{b+d}$
Odds Ratio = $\frac{\frac{a}{c}}{\frac{b}{d}} == \frac{ad}{cb}$

- All obtained with cs disease exposure[, or]
- Only Odds ratio valid with outcome based sampling

Crosstabulation in stata

. cs back_p sex, or

	sex Exposed	Unexposed	 Total		
Cases Noncases	637 1694	445 1739	1082 3433		
Total	2331	2184	4515		
Risk	.2732733	.2037546	.2396456		
	 Point	estimate	 [95% Conf	. Interval]	
Risk difference Risk ratio Attr. frac. ex.	1.3	595187 841188 643926	.044767 1.206183 .1709386		
Attr. frac. pop Odds ratio		197672 169486	1.27969	1.68743	(Cornfield)
=	+	chi2(1) =	29.91 Pr>ch	i2 = 0.0000	

Limitations of Tabulation

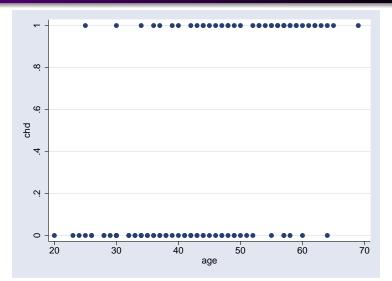
- No continuous predictors
- Limited numbers of categorical predictors

Introduction
Generalized Linear Models
Logistic Regression
Other GLM's for Binary Outcomes

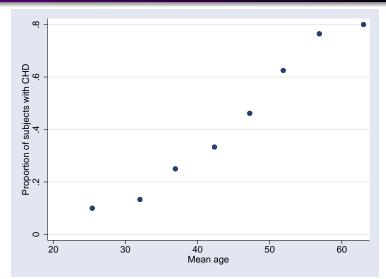
Linear Regression and Binary Outcomes

- Can't use linear regression with binary outcomes
 - Distribution is not normal
 - Limited range of sensible predicted values
- Changing parameter estimation to allow for non-normal distribution is straightforward
- Need to limit range of predicted values

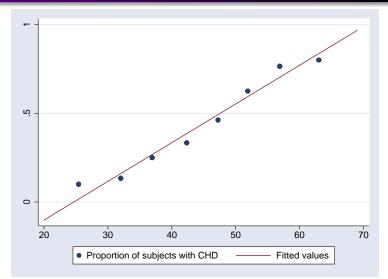
Example: CHD and Age



Example: CHD by Age group



Example: CHD by Age - Linear Fit



Generalized Linear Models

Linear Model

$$Y = \beta_0 + \beta_1 x_1 + \ldots + \beta_p x_p + \varepsilon$$

 ε is normally distributed

Generalized Linear Model

$$g(Y) = \beta_0 + \beta_1 x_1 + \ldots + \beta_p x_p + \varepsilon$$

 ε has a known distribution

Generalized Linear Models

Linear Model

$$Y = \beta_0 + \beta_1 x_1 + \ldots + \beta_p x_p + \varepsilon$$

 ε is normally distributed

Generalized Linear Model

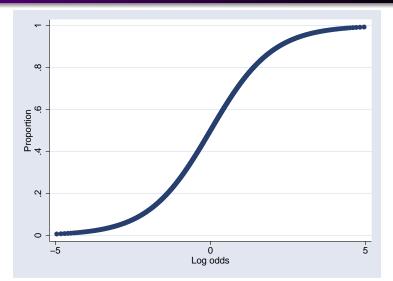
$$g(Y) = \beta_0 + \beta_1 x_1 + \ldots + \beta_p x_p + \varepsilon$$

 ε has a known distribution

Probabilities and Odds

Probability	Odds				
р	$\Omega = p/(1-p)$				
0.1 = 1/10	0.1/0.9 = 1:9 = 0.111				
0.5 = 1/2	0.5/0.5 = 1:1 = 1				
0.9 = 9/10	0.9/0.1 = 9:1 = 9				

Probabilities and Odds



Advantage of the Odds Scale

- Just a different scale for measuring probabilities
- Any odds from 0 to ∞ corresponds to a probability
- ullet Any log odds from $-\infty$ to ∞ corresponds to a probability
- Shape of curve commonly fits data

The binomial distribution

- Outcome can be either 0 or 1
- Has one parameter: the probability that the outcome is 1
- Assumes observations are independent

The Logistic Regression Equation

$$\log\left(\frac{\hat{\pi}}{1-\hat{\pi}}\right) = \beta_0 + \beta_1 x_1 + \ldots + \beta_p x_p$$

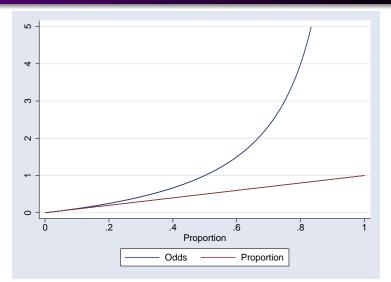
$$Y \sim \text{Binomial}(\hat{\pi})$$

- Y has a binomial distribution with parameter π
- $\hat{\pi}$ is the predicted probability that Y = 1

Parameter Interpretation

- When x_i increases by 1, $\log(\hat{\pi}/(1-\hat{\pi}))$ increases by β_i
- Therefore $\hat{\pi}/(1-\hat{\pi})$ increases by a factor e^{β_i}
- For a dichotomous predictor, this is exactly the odds ratio we met earlier.
- For a continuous predictor, the odds increase by a factor of e^{β_i} for each unit increase in the predictor

Odds Ratios and Relative Risks



Logistic Regression in Stata

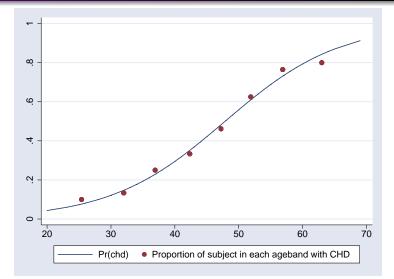
. logistic chd age

Logistic regr	ession			Number	of obs	=	100
				LR chi2	2(1)	-	29.31
				Prob >	chi2	-	0.0000
Log likelihoo	d = -53.676546	5		Pseudo	R2	-	0.2145
chd	Odds Ratio	Std. Err.	Z	P> z	[95% C	Conf.	<pre>Interval]</pre>
	1.117307	.0268822	4 (1	0.000	1.0658		1.171257
age	1.11/30/	.0208822	4.61	0.000	1.0008	542	1.1/125/

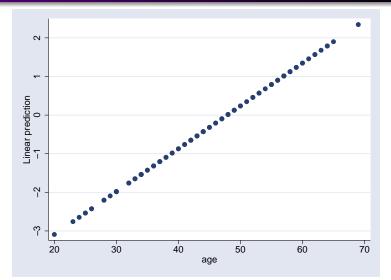
Predict

- Lots of options for the predict command
- p gives the predicted probability for each subject
- xb gives the linear predictor (i.e. the log of the odds) for each subject

Plot of probability against age



Plot of log-odds against age



Introduction
Generalized Linear Models
Logistic Regression
Other GLM's for Binary Outcomes

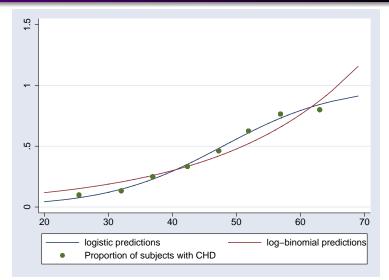
Other Models for Binary Outcomes

- Can use any function that maps $(-\infty, \infty)$ to (0, 1)
 - Probit Model
 - Complementary log-log
- Parameters lack interpretation

The Log-Binomial Model

- Models $\log(\pi)$ rather than $\log(\pi/(1-\pi))$
- Gives relative risk rather than odds ratio
- Can produce predicted values greater than 1
- May not fit the data as well if outcome is not rare
- Stata command: glm varlist, family (binomial) link (log)
- If association between $log(\pi)$ and predictor non-linear, lose simple interpretation.

Log-binomial model example



Cross-tabulation Regression Diagnostics Discrimination and Calibration Goodness of Fit Influential Observations Poorly fitted observations Separation

Logistic Regression Diagnostics

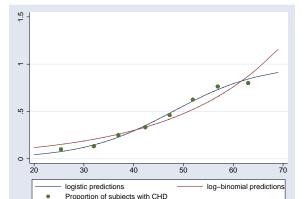
- Goodness of Fit
- Influential Observations
- Poorly fitted Observations

Discrimination and Calibration Goodness of Fit Influential Observations Poorly fitted observations Separation

Discrimination and Calibration

Discrimination Subjects with higher predicted probabilities more likely to have the event

Calibration Predicted probability is a good measure of probability of the event.



Problems with R²

- Multiple definitions
- Lack of interpretability
- Low values
 - Can predict P(Y = 1) perfectly, not predict Y well at all if $P(Y = 1) \approx 0.5$.

Hosmer-Lemeshow test

- Detects lack of calibration
- Very like χ^2 test
- Divide subjects into groups
- Compare observed and expected numbers in each group
- Want to see a non-significant result
- Command used is estat gof

Hosmer-Lemeshow test example

. estat gof, group(5) table

Logistic model for chd, goodness-of-fit test

(Table collapsed on quantiles of estimated probabilities)

0	Froup		Prob	-	0bs_1	1	Exp_1		Obs_0	1	Exp_0		Total	1
		+-		+		+	+	+-		+-		+-		1
	1		0.1690	1	2	1	2.1		18	1	17.9	L	20	1
	2		0.3183	1	5	1	4.9		16	1	16.1	L	21	1
	3		0.5037	1	9	1	8.7		12	1	12.3	L	21	1
	4		0.7336		15	1	15.1		8	1	7.9		23	1
	5		0.9125	1	12	1	12.2		3	1	2.8	L	15	1

```
        number of observations =
        100

        number of groups =
        5

        Hosmer-Lemeshow chi2(3) =
        0.05

        Prob > chi2 =
        0.9973
```


Sensitivity and Specificity

	Test +ve	Test -ve	Total
Cases	а	b	a + b
Controls	С	d	c + d
Total	a + c	b + d	a+b+c+d

- Sensitivity:
 - Probability that a case classified as positive
 - a/(a+b)
- Specificity:
 - Probability that a non-case classified as negative
 - d/(c+d)

Discrimination and Calibration Goodness of Fit Influential Observations Poorly fitted observations Separation

Sensitivity and Specificity in Logistic Regression

- Sensitivity and specificity can only be used with a single dichotomous classification.
- Logistic regression gives a probability, not a classification
- Can define your own threshold for use with logistic regression
- Commonly choose 50% probability of being a case
- Can choose any probability: sensitivity and specificity will vary
- Why not try every possible threshold and compare results:
 ROC curve

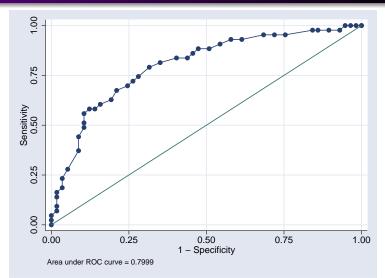
Discrimination and Calibratio Goodness of Fit Influential Observations Poorly fitted observations Separation

ROC Curves

- Shows how sensitivity varies with changing specificity
- Gives a measure of discrimination
- Larger area under the curve = better
- Maximum = 1
- Tossing a coin would give 0.5
- Command used is lroc

Discrimination and Calibration
Goodness of Fit
Influential Observations
Poorly fitted observations

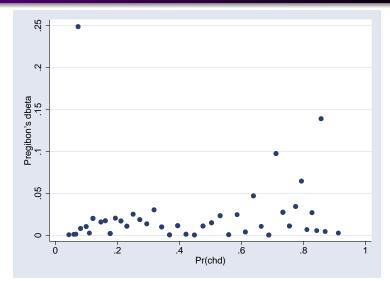
ROC Example



Influential Observations

- Residuals less useful in logistic regression than linear
- Can only take the values $1 \hat{\pi}$ or $-\hat{\pi}$.
- Grouping by covariate pattern may help: observed outcome can now lie between 0 and 1 if multiple observations have same pattern
- Leverage does not translate to logistic regression model
- $\Delta \hat{\beta}_i$ measures effect of i^{th} observation on parameters
- Obtained from dbeta option to predict command
- Plot against $\hat{\pi}$ to reveal influential observations

Plot of $\Delta \hat{\beta}_i$ against $\hat{\pi}$



Discrimination and Calibration Goodness of Fit Influential Observations Poorly fitted observations Separation

Effect of removing influential observation

. logistic chd age if dbeta < 0.2

Poorly fitted observations

- Can be identified by residuals
 - Deviance residuals: predict varname, ddeviance
 - χ^2 residuals: predict varname, dx2
- Not influential: omitting them will not change conclusions
- May need to explain fit is poor in particular area
- Plot residuals against predicted probability, look for outliers

Separation

- Need at least one case and one control in each subgroup
- If you have lots of subgroups, this may not be true
- In which case, log(OR) for that group is $-\infty$ or ∞
- Stata will drop all subjects from that group (unless you use the option asis)
- Not a problem with continuous predictors

