Statistical Modelling in Stata 5: Linear Models

Mark Lunt

Centre for Epidemiology Versus Arthritis University of Manchester

Structure

- This Week
 - What is a linear model?
 - How good is my model ?
 - Does a linear model fit this data?
- Next Week
 - Categorical Variables
 - Interactions
 - Confounding
 - Other Considerations
 - Variable Selection
 - Polynomial Regression

Statistical Models

All models are wrong, but some are useful.

(G.E.P. Box)

A model should be as simple as possible, but no simpler. (attr. Albert Einstein)

Introduction Parameters Prediction ANOVA

Stata commands for linear model

What is a Linear Model?

- Describes the relationship between variables
- Assumes that relationship can be described by straight lines
- Tells you the expected value of an outcome or y variable, given the values of one or more predictor or x variables

Introduction Parameters Prediction ANOVA

Stata commands for linear models

Variable Names

Outcome	Predictor
Dependent variable	Independent variables
Y-variable	x-variables
Response variable	Regressors
Output variable	Input variables
	Explanatory variables
	Carriers
	Covariates

The Equation of a Linear Model

The equation of a linear model, with outcome Y and predictors $x_1, \ldots x_p$

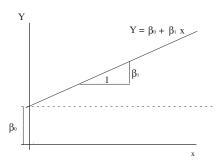
$$Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_p x_p + \varepsilon$$

- $\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_p x_p$ is the *Linear Predictor*
- $\hat{Y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_p x_p$ is the predictable part of Y.
- ε is the *error term*, the unpredictable part of *Y*.
- We assume that ε is normally distributed with mean 0 and variance σ^2 .

Linear Model Assumptions

- Mean of Y | x is a linear function of x
- Variables $Y_1, Y_2 ... Y_n$ are independent.
- The variance of Y | x is constant.
- Distribution of $Y \mid x$ is normal.

Parameter Interpretation



- β_1 is the amount by which Y increases if x_1 increases by 1, and none of the other x variables change.
- β_0 is the value of Y when all of the x variables are equal to 0.

Estimating Parameters

- β_j in the previous equation are referred to as *parameters* or *coefficients*
- Don't use the expression "beta coefficients": it is ambiguous
- We need to obtain estimates of them from the data we have collected.
- Estimates normally given roman letters b_0, b_1, \ldots, b_n .
- Values given to b_j are those which minimise $\sum (Y \hat{Y})^2$: hence "Least squares estimates"

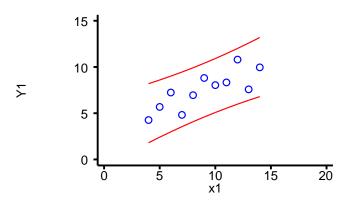
Inference on Parameters

- If assumptions hold, sampling distribution of b_j is normal with mean β_j and variance σ^2/ns_x^2 (for sufficiently large n), where :
 - σ^2 is the variance of the error terms ε ,
 - s_x^2 is the variance of x_i and
 - n is the number of observations
- Can perform t-tests of hypotheses about β_j (e.g. $\beta_j = 0$).
- Can also produce a confidence interval for β_i .
- Inference in β_0 (intercept) is usually not interesting.

Inference on the Predicted Value

- $\bullet \ \ Y = \beta_0 + \beta_1 x_1 + \ldots + \beta_p x_p + \varepsilon$
- Predicted Value $\hat{Y} = b_0 + b_1 x_1 + \ldots + b_p x_p$
- Observed values will differ from predicted values because of
 - Random error (ε)
 - Uncertainty about parameters β_j .
- We can calculate a 95% prediction interval, within which we would expect 95% of observations to lie.
- Reference Range for Y

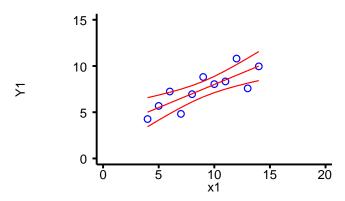
Prediction Interval



Inference on the Mean

- The mean value of Y at a given value of x does not depend on ε.
- The standard error of \hat{Y} is called the standard error of the prediction (by stata).
- We can calculate a 95% confidence interval for \hat{Y} .
- This can be thought of as a confidence region for the regression line.

Confidence Interval



Introduction Parameters Prediction ANOVA

ata commands for linear models

• Variance of Y is
$$\frac{\sum (Y-\bar{Y})^2}{n-1} = \frac{\sum (Y-\hat{Y})^2 + \sum (\hat{Y}-\bar{Y})^2}{n-1}$$

- Variance of Y is $\frac{\sum (Y-\bar{Y})^2}{n-1} = \frac{\sum (Y-\hat{Y})^2 + \sum (\hat{Y}-\bar{Y})^2}{n-1}$
- ullet $SS_{reg} = \sum \left(\hat{Y} ar{Y}
 ight)^2$ (regression sum of squares)

Prediction

- Variance of Y is $\frac{\sum (Y-\bar{Y})^2}{n-1} = \frac{\sum (Y-\hat{Y})^2 + \sum (\hat{Y}-\bar{Y})^2}{n-1}$
- $SS_{reg} = \sum \left(\hat{Y} \bar{Y} \right)^2$ (regression sum of squares)
- $SS_{res} = \sum (Y \hat{Y})^2$ (residual sum of squares)

- Variance of Y is $\frac{\sum (Y-\bar{Y})^2}{n-1} = \frac{\sum (Y-\hat{Y})^2 + \sum (\hat{Y}-\bar{Y})^2}{n-1}$
- $SS_{reg} = \sum \left(\hat{Y} \bar{Y} \right)^2$ (regression sum of squares)
- $SS_{res} = \sum (Y \hat{Y})^2$ (residual sum of squares)
- Each part has associated *degrees of freedom*: p d.f for the regression, n p 1 for the residual.

- Variance of Y is $\frac{\sum (Y-\bar{Y})^2}{n-1} = \frac{\sum (Y-\hat{Y})^2 + \sum (\hat{Y}-\bar{Y})^2}{n-1}$
- $SS_{reg} = \sum \left(\hat{Y} \bar{Y} \right)^2$ (regression sum of squares)
- $SS_{res} = \sum (Y \hat{Y})^2$ (residual sum of squares)
- Each part has associated *degrees of freedom*: p d.f for the regression, n p 1 for the residual.
- The mean square MS = SS/df.

- Variance of Y is $\frac{\sum (Y-\bar{Y})^2}{n-1} = \frac{\sum (Y-\hat{Y})^2 + \sum (\hat{Y}-\bar{Y})^2}{n-1}$
- $SS_{reg} = \sum \left(\hat{Y} \bar{Y} \right)^2$ (regression sum of squares)
- $SS_{res} = \sum (Y \hat{Y})^2$ (residual sum of squares)
- Each part has associated *degrees of freedom*: p d.f for the regression, n p 1 for the residual.
- The mean square MS = SS/df.
- MS_{reg} should be similar to MS_{res} if no association between Y and x

- Variance of Y is $\frac{\sum (Y \bar{Y})^2}{n-1} = \frac{\sum (Y \hat{Y})^2 + \sum (\hat{Y} \bar{Y})^2}{n-1}$
- $SS_{reg} = \sum (\hat{Y} \bar{Y})^2$ (regression sum of squares)
- $SS_{res} = \sum (Y \hat{Y})^2$ (residual sum of squares)
- Each part has associated *degrees of freedom*: p d.f for the regression, n p 1 for the residual.
- The mean square MS = SS/df.
- MS_{reg} should be similar to MS_{res} if no association between Y and x
- $F = \frac{MS_{reg}}{MS_{res}}$ gives a measure of the strength of the association between Y and x.

ANOVA Table

Source	df	Sum of Squares	Mean Square	F
Regression	р	SS _{reg}	$ extit{MS}_{ extit{reg}} = rac{ extit{SS}_{ extit{reg}}}{ ho}$	$\frac{MS_{reg}}{MS_{res}}$
Residual	n-p-1	SS_{res}	$MS_{res} = \frac{SS_{res}}{(n-p-1)}$	
Total	n-1	SS _{tot}	$MS_{tot} = \frac{SS_{tot}}{(n-1)}$	

Goodness of Fit

- Predictive value of a model depends on how much of the variance can be explained.
- R² is the proportion of the variance explained by the model
- $R^2 = \frac{SS_{reg}}{SS_{tot}}$
- R² always increases when a predictor variable is added
- Adjusted R² is better for comparing models.

Stata Commands for Linear Models

- The basic command for linear regression is regress y-var x-vars
- Can use by and if to select subgroups.
- The command predict can produce
 - predicted values
 - standard errors
 - residuals
 - etc.

F() F Statistic for the Hypothesis $\beta_j = 0$ for all j

Prob > F p-value for above hypothesis test

R-squared Proportion of variance explained by regression

 $= rac{\mathit{SS}_{\mathit{Model}}}{\mathit{SS}_{\mathit{Total}}}$

Adj R-squared $\frac{(n-1)R^2-p}{n-p-1}$ Root MSE $\sqrt{MS_{Posidi}}$

 $=\hat{\sigma}$

troduction arameters rediction NOVA

Stata commands for linear models

Stata Output 1: Example

Source	1	SS	df	MS
Model Residual	+	27.5100011 13.7626904	1 9	27.5100011 1.52918783
Total	1	41.2726916	10	4.12726916

Number of obs = 11 F(1, 9) = 17.99 Prob > F = 0.0022 R-squared = 0.6665 Adj R-squared = 0.6295 Root MSE = 1.2366

Stata Output 2: Coefficients

Coef. Estimate of parameter β for the variable in the left-hand column. (β_0 is labelled "_cons" for "constant")

Std. Err. Standard error of b.

t The value of $\frac{b-0}{s.e.(b)}$, to test the hypothesis that $\beta = 0$.

P > |t| P-value resulting from the above hypothesis test. 95% Conf. Interval A 95% confidence interval for β .

atroduction arameters rediction NOVA

Stata commands for linear models

Stata Output 2: Example

Y	1	Coef.	Std. Err.	t	P> t	[95% Conf. Interval]
X		.5000909	.1179055	4.241	0.002	.2333701 .7668117
_cons	1	3.000091	1.124747	2.667	0.026	.4557369 5.544445

Is a linear model appropriate?

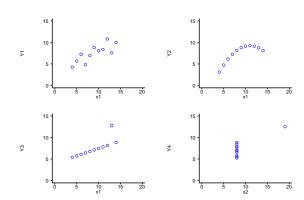
- Does it provide adequate predictions?
 - Goodness of fit or RMSE
- Do my data satisfy the assumptions of the linear model?
- Are there any individual points having an inordinate influence on the model?

Constant Variance Linearity Influential points Normality

Is a linear model appropriate?

- Does it provide adequate predictions?
 - Goodness of fit or RMSE
 - Not a statistical question: how close is "adequate"
- Do my data satisfy the assumptions of the linear model?
- Are there any individual points having an inordinate influence on the model?

Anscombe's Data



Linear Model Assumptions

- Linear models are based on 4 assumptions
 - Variables $Y_1, Y_2 ... Y_n$ are independent.
 - The variance of $Y_i \mid x$ is constant.
 - Mean of Y_i is a linear function of x_i .
 - Distribution of $Y_i \mid x$ is normal.
- If any of these are incorrect, inference from regression model is unreliable
- We may know about assumptions from experimental design (e.g. repeated measures on an individual are unlikely to be independent).
- Should test all 4 assumptions.

Distribution of Residuals

- Error term $\varepsilon_i = Y_i \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \ldots + \beta_p x_{pi}$
- Residual term $e_i = Y_i b_0 + b_1 x_{1i} + b_2 x_{2i} + ... + b_p x_{pi} = Y_i \hat{Y}_i$
- Nearly but not quite the same, since our estimates of β_j are imperfect.
- \hat{Y} varies more at extremes of x-range
- Y does not
- Hence residuals vary less at extremes of the x-range
- If error terms have constant variance, residuals don't.

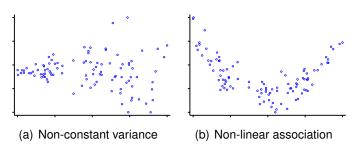
Standardised Residuals

- Variation in variance of residuals as x changes is predictable.
- Can therefore correct for it.
- Standardised Residuals have mean 0 and standard deviation 1.
- Can use standardised residuals to test assumptions of linear model
- predict Yhat, xb will generate predicted values
- predict sres, rstand will generate standardised residuals
- scatter sres Yhat will produce a plot of the standardised residuals against the fitted values.

Testing Constant Variance:

- Residuals should be independent of predicted values
- There should be no pattern in this plot
- Common patterns
 - Spread of residuals increases with fitted values
 - This is called heteroskedasticity
 - May be removed by transforming Y
 - Can be formally tested for with hettest
 - There is curvature
 - The association between x and Y variables is not linear
 - May need to transform Y or x
 - Alternatively, fit x^2 , x^3 etc. terms
 - Can be formally tested for with ovtest

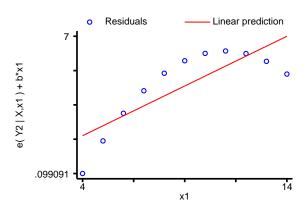
Residual vs Fitted Value Plot Examples



Testing Linearity: Partial Residual Plots

- Partial residual $p_j = e + b_j x_j = Y \beta_0 \sum_{l \neq j} b_l x_l$
- Formed by subtracting that part of the predicted value that does not depend on x_j from the observed value of Y.
- Plot of p_j against x_j shows the association between Y and x_j after adjusting for the other predictors.
- Can be obtained from stata by typing cprplot xvar after performing a regression.

Example Partial Residual Plot



Identifying Outliers

- Points which have a marked effect on the regression equation are called *influential* points.
- Points with unusual x-values are said to have high leverage.
- Points with high leverage may or may not be influential, depending on their Y values.
- Plot of studentised residual (residual from regression excluding that point) against leverage can show influential points.

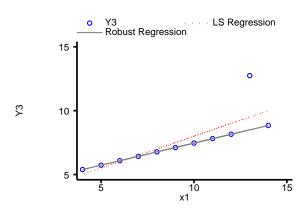
Statistics to Identify Influential Points

- DFBETA Measures influence of individual point on a single coefficient β_i .
- DFFITS Measures influence of an individual point on its predicted value.
- Cook's Distance Measured the influence of an individual point on *all* predicted values.
 - All can be produced by predict.
 - There are suggested cut-offs to determine influential observations.
 - May be better to simply look for outliers.

Y-outliers

- A point with normal x-values and abnormal Y-value may be influential.
- Robust regression can be used in this case.
 - Observations repeatedly reweighted, weight decreases as magnitude of residual increases
- Methods robust to x-outliers are very computationally intensive.

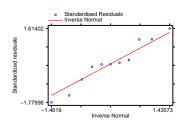
Robust Regression

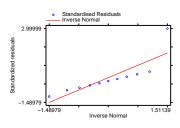


Testing Normality

- Standardised residuals should follow a normal distribution.
- Can test formally with swilk varname.
- Can test graphically with qnorm varname.

Normal Plot: Example





Graphical Assessment & Formal Testing

- Can test assumptions both formally and informally
- Both approaches have advantages and disadvantages
 - Tests are always significant in sufficiently large samples.
 - Differences may be slight and unimportant.
 - Differences may be marked but non-significant in small samples.
- Best to use both

