Sampling \& Confidence Intervals

Mark Lunt

Centre for Epidemiology Versus Arthritis University of Manchester

CENTRE FOR
,
VERUS
ARTHRITIS
25/10/2022

Principles of Sampling

- Often, it is not practical to measure every subject in a population.
- A reduced number of subjects, a sample, is measured instead.
- Cheaper
- Quicker
- More thorough
- Sample needs to be chosen in such a way as to be representative of the population

Types of Sample

- Simple Random
- Stratified
- Cluster
- Quota
- Convenience
- Systematic

Simple Random Sample

- Every subject has the same probability of being selected.
- This probability is independent of who else is in the sample.
- Need a list of every subject in the population (sampling frame).
- Statistical methods depend on randomness of sampling.
- Refusals mean the sample is no longer random.
- Divide population into distinct sub-populations.
- E.g. into age-bands, by gender
- Randomly sample from each sub-population.
- sampling probability is same for everyone in a sub-population
- sampling probability differs between sub-populations
- More efficient than a simple random sample if variable of interest varies more between sub-populations than within sub-populations.

Cluster

- Randomly sample groups of subjects rather than subjects
- Why ?
- List of subjects not available, list of groups is
- Cheaper and easier to recruit a number of subjects at the same time.
- In intervention studies, may be easier to treat groups: randomise hospitals rather than patients.
- Need a reasonable number of clusters to assure representativeness.
- The more similar clusters are, the better cluster sampling works.
- Cluster samples need special methods for analysis
- Deliberate attempt to ensure proportions of subjects in each category in a sample match the proportion in the population.
- Often used in market research: quotas by age, gender, social status.
- Variables not used to define the quotas may be very different in the sample and population.
- Proportion of men and of elderly may be correct, not proportions of elderly men.
- Probability of inclusion is unknown, may vary greatly between categories
- Cannot assume sample is representative.

Systematic \& Convenience Samples

Systematic Take every $n^{\text {th }}$ subject.

- If there is clustering (or periodicity) in the sampling frame, may not be representative.
- Shared surnames can cause problems.
- Randomly order and take every $n^{\text {th }}$ subject: random.

Convenience Take a random sample of easily accessible subjects

- May not be representative of entire population.
- E.g. people going to G.P. with sore throat easy to identify, not representative of people with sore throat.

Estimating from Random Samples

- We are interested in what our sample tells us about the population
- We use sample statistics to estimate population values
- Need to keep clear whether we are talking about sample or population
- Values in the population are given Greek letters $\mu, \pi \ldots$, whilst values in the sample are given equivalent Roman letters $m, p \ldots$
- Suppose we have a population, in which a variable x has a mean μ and standard deviation σ. We take a random sample of size n. Then
- Sample mean \bar{x} should be close to the population mean μ.
- However, if several samples are taken, \bar{x} in each sample will differ slightly.

Variation of \bar{x} around μ

- How much the means of different samples differ depends on
Sample Size The mean of a small sample will vary more than the mean of a large sample.
Variance in the Population If the variable measured varies little, the sample mean can only vary little.
- I.e. variance of \bar{x} depends on variance of x and on sample size n.

Example

Consider consider a population consisting of 1000 copies of each of the digits $0,1, \ldots, 9$. The distribution of the values in this population is

Example: Samples

- Samples of size 5, 25 and 100
- 2000 samples of each size were randomly generated
- Mean of $x(\bar{x})$ was calculated for each sample
- Histograms created for each sample size separately

Example: Distributions of \bar{x}

Size 5

Size 25

Size 100

Properties of \bar{x}

$E(\bar{x})=\mu$ i.e. on average, the sample mean is the same as the population mean.
Standard Deviation of $\overline{\boldsymbol{x}}=\frac{\sigma}{\sqrt{n}}$ i.e the uncertainty in \bar{x} increases with σ, decreases with n. The standard deviation of the mean is also called the Standard Error
$\overline{\boldsymbol{x}}$ is normally distributed This is true whether or not x is normally distributed, provided n is sufficiently large. Thanks to the Central Limit Theorem.

- Standard deviation of the sampling distribution of a statistic
- Sampling distribution: the distribution of a statistic as sampling is repeated
- All statistics have sampling distributions
- Statistical inference is based on the standard error

Example: Sampling Distribution of \bar{x}

$$
\mu=4.5 \sigma=2.87
$$

Size of samples

Mean \bar{x}		S.D. \bar{x}	
Predicted	Observed	Predicted	Observed
4.5	4.47	1.29	1.26
4.5	4.51	0.57	0.57
4.5	4.50	0.29	0.30

Estimating the Variance

In a population of size N, the variance of x is given by

$$
\begin{equation*}
\sigma^{2}=\frac{\Sigma\left(x_{i}-\mu\right)^{2}}{N} \tag{1}
\end{equation*}
$$

This is the Population Variance
In a sample of size n, the variance of x is given by

$$
\begin{equation*}
s^{2}=\frac{\Sigma\left(x_{i}-\bar{x}\right)^{2}}{n-1} \tag{2}
\end{equation*}
$$

This is the Sample Variance

Why $n-1$ rather than N

Population $\quad \sigma^{2}=\frac{\Sigma\left(x_{i}-\mu\right)^{2}}{N}$
Sample $\quad s^{2}=\frac{\Sigma\left(x_{i}-\bar{x}\right)^{2}}{n-1}$

- Use $n-1$ rather than n because we don't know μ, only an imperfect estimate \bar{x}.
- Since \bar{x} is calculated from the sample (i.e. from the x_{i}), x_{i} will tend to be closer to \bar{x} than it is to μ.
- Dividing by n would underestimate the variance
- With a reasonable sample size, makes little difference.

Proportions

Suppose that you want to estimate π, the proportion of subjects in the population with a given characteristic. You take a random sample of size n, of whom r have the characteristic.

- $p=\frac{r}{n}$ is a good estimator for π.
- If you create a variable x which is 1 for subjects which have the characteristic and 0 for those who do not, then $p=\bar{x}$
- If the sample is large, p will be normally distributed, even though x isn't

Reference Ranges

If x is normally distributed with mean μ and standard deviation σ, then we can find out all of the percentiles of the distribution. E.g.
Median $=\mu$
$25^{\text {th }}$ centile $=\mu-0.674 \sigma$
$75^{\text {th }}$ centile $=\mu+0.674 \sigma$
Commonly, we are interested in the interval in which 95% of the population lie, which is from $\mu-1.96 \sigma$ to $\mu+1.96 \sigma$ This is from the $2.5^{\text {th }}$ centile to the $97.5^{\text {th }}$ centile

- Red lines cut off 5\% of data in each tail
- 90% of data lies between lines
- Blue lines are at -1.645, 1.645

Non-normal distributions 1: Skewed distribution

- χ^{2} distribution
- Red lines cut off 5% of data in each tail
- Mean $\pm 1.645 \times$ S.D. covers $>90 \%$ of data
- Only $2 \%<$ mean - 1.645 S.D
- $6.5 \%>$ mean + 1.645 S.D.

Non-normal distributions 2: Long-tailed distribution

- t-distribution
- Symmetric, but not normal
- Higher "peak", longer tails than normal
- Red lines cut off 5% of data in each tail
- Blue lines at mean ± 1.645 S.D.
- Mean $\pm 1.645 \times$ S.D. covers $>94 \%$ of data

Reference Range Example

Bone mineral density (BMD) was measured at the spine in 1039 men. The mean value was $1.06 \mathrm{~g} / \mathrm{cm}^{2}$ and the standard deviation was $0.222 \mathrm{~g} / \mathrm{cm}^{2}$. Assuming BMD is normally distributed, calculate a 95% reference interval for BMD in men.

$$
\begin{aligned}
\text { Mean BMD } & =1.06 \mathrm{~g} / \mathrm{cm}^{2} \\
\text { Standard deviation of BMD } & =0.222 \mathrm{~g} / \mathrm{cm}^{2} \\
\Rightarrow \quad 95 \% \text { Reference interval } & =1.06 \pm 1.96 \times 0.222 \\
& =0.62 \mathrm{~g} / \mathrm{cm}^{2}, 1.50 \mathrm{~g} / \mathrm{cm}^{2}
\end{aligned}
$$

Confidence Intervals

- The distribution of \bar{x} approaches normality as n gets bigger.
- \bar{x} can be thought of as a random draw from a distribution with mean μ and standard deviation $\frac{\sigma}{\sqrt{n}}$.
- If samples could be taken repeatedly, 95% of the time, the \bar{x} would lie between $\mu-1.96 \frac{\sigma}{\sqrt{n}}$ and $\mu+1.96 \frac{\sigma}{\sqrt{n}}$.
- As a consequence, 95% of the time, μ would lie between $\bar{x}-1.96 \frac{\sigma}{\sqrt{n}}$ and $\bar{x}+1.96 \frac{\sigma}{\sqrt{n}}$.
- This is a 95% confidence interval for the population mean.
- If, as is usually the case, σ is unknown, can use its estimate s.

Confidence Interval Example

In 216 patients with primary biliary cirrhosis, serum albumin had a mean value of $34.46 \mathrm{~g} / \mathrm{l}$ and a standard deviation of $5.84 \mathrm{~g} / \mathrm{l}$.

$$
\begin{array}{rll}
\quad \text { Standard deviation of } x & =5.84 \\
\Rightarrow \quad \text { Standard error of } \bar{x} & =\frac{5.84}{\sqrt{216}} \\
& =0.397 \\
\Rightarrow \quad 95 \% \text { Confidence Interval } & =34.46 \pm 1.96 \times 0.397 \\
& =(33.68,35.24)
\end{array}
$$

So, the mean value of serum albumin in the population of patients with primary biliary cirrhosis is probably between 33.68 g / l and $35.24 \mathrm{~g} / \mathrm{l}$.

Confidence Intervals for Proportions

- p is normally distributed with standard error $\sqrt{\frac{p(1-p)}{n}}$ provided n is large enough.
- This can be used to calculate a confidence interval for a proportion.
- Exact confidence intervals can be calculated for small n (less than 20, say) from tables of the binomial distribution.
- A reference range for a proportion in meaningless: a subject either has the characteristic or they do not.

Confidence Interval around a Proportion: Example

100 subjects each receive two analgesics, X and Y, for one week each in a randomly determined order. They then state a preference for one drug. 65 prefer X, 35 prefer Y. Calculate a 95\% confidence interval for the proportion preferring X.

$$
\begin{aligned}
\text { Standard Error of } p & =\sqrt{\frac{0.65 \times 0.35}{100}} \\
& =0.0477 \\
\Rightarrow 95 \% \text { Confidence Interval } & =0.65 \pm 1.96 \times 0.0477 \\
& =(0.56,0.74)
\end{aligned}
$$

So, in the general population, it is likely that between 56% and 74% of people would prefer X .

Confidence Intervals in Stata

- The ci command produces confidence intervals
- For proportions, you use the binomial option

Confidence Intervals and Reference Ranges

- Confidence intervals tell us about the population mean
- Reference ranges tell us about individual values
- Reference ranges require the variable to be normally distributed
- Confidence intervals do not
- If sampling distribution of statistic of interest is normal
- Normality may require reasonable sample size

Sample Size Calculations

- Primary outcome of a study is a statistic (mean, proportion, relative risk, incidence rate, hazard ratio etc)
- The larger the study, the more precisely we can estimate our statistic
- We can calculate how many subjects we need to achieve adequate precision if we
- know how the distribution of the statistic changes with increasing numbers of subjects
- Have a definition of "adequate"
- Power-based calculations are more complicated (for next week).

Sample size for precision of mean

Suppose that we want to know μ to a certain level of precision.

- We can be 95% certain that μ lies within

$$
\bar{x} \pm \frac{1.96 \sigma}{\sqrt{n}}
$$

- The width of this interval depends on n, which we control.
- Therefore, we can select n to give our chosen width.
- Need to use an estimate for σ, for which we can use s.

Sample Size Formula

Suppose we want to fix the width of the 95% confidence interval to 2 W , i.e. $95 \% \mathrm{Cl}=\bar{x} \pm W$. Then

$$
\begin{aligned}
W & =1.96 \times \text { Standard Error } \\
& =1.96 \times \frac{\sigma}{\sqrt{n}} \\
\Rightarrow \quad W^{2} & =\frac{1.96^{2} \sigma^{2}}{n} \\
\Rightarrow \quad n & =\left(\frac{1.96 \sigma}{W}\right)^{2}
\end{aligned}
$$

Sample Size Example

In the primary biliary cirrhosis example, suppose that we wish to know the mean serum albumin in cirrhosis patients to within $0.5 \mathrm{~g} / \mathrm{l}$. How many patients would we need to study (assuming a standard deviation of $5.84 \mathrm{~g} / \mathrm{I})$.

$$
\begin{aligned}
W & =0.5 \\
\sigma & =5.84 \\
\Rightarrow \quad n & =\left(\frac{1.96 \sigma}{W}\right)^{2} \\
& =\left(\frac{1.96 \times 5.84}{0.5}\right)^{2} \\
& \approx 524
\end{aligned}
$$

