Summarising Data

Mark Lunt

Centre for Epidemiology Versus Arthritis
University of Manchester

CENTPE FOR
 VERSUS ARTHRITIS

18/10/2022

Examples of Types of Data | Oupes of dala |
| :---: |
| ouanilivive ala |
| oala |

Nominal	Blood group; Hair colour.
Ordinal	Strongly agree, agree, disagree, strongly disagree.
Discrete	Number of children.
Continuous	Birthweight.

- Distinction between nominal and ordinal variables can be subjective: e.g. vertebral fracture types: Wedge, Concavity, Biconcavity, Crush.
Could argue that a crush is worse than a biconcavity which is worse than a concavity but this is not self-evident.
- Distinction between ordinal and discrete variables can be subjective: e.g. cancer staging I, II, III, IV: sounds discrete, but better treated as ordinal.
- Continuous variables generally measured to a fixed level of precision, which makes them discrete. Not a problem, provide there are enough levels.

What type of variable are each of the following

- Number of visits to a G.P. this year
- Marital Status
- Size of tumour in cm
- Pain, rated as minimal/moderate/severe/unbearable
- Blood pressure (mm Hg)

- Count the number of subjects in each group.
- The count is commonly refered to as the frequency
- The proportion in each group is referred to as the relative frequency
- Stata command to produce a tabulation is tabulate varname

region \|	Freq.	Percent	Cum.
Canada \|	422	22.84	22.84
USA \|	541	29.27	52.11
Mexico \|	223	12.07	64.18
Europe \|	493	26.68	90.85
Asia \|	169	9.15	100.00
Total \|	1,848	100.00	

Bar Chart: Data represented as a series of bars, height of bar proportional to frequency.
Pie Chart: Data represented as a circle divided into segments, area of segment proportional to frequency.
Pictograms: Similar to bar chart, but uses a number of pictures to represent each bar.
Bar chart is the easiest to understand.

- Similar to a bar chart
- Continuous, not categorical variable
- Area of bars proportional to probability of observation being in that bar
- Axis can be
- Frequency (heights add up to n)
- Percentage (heights add up to 100%)
- Density (Areas add up to 1)

Impossible to say.

- Depends on the number of observations: if individual groups are too small, results are meaningless.
- With discrete variables, exact positions of boundaries may be important.
- Tables need few groups, graphs can have more if sufficient numbers.
- May be decided for you in software.

24 bins (default)

30 bins (correct)

- histogram varname produces a histogram
- Number of bars can by set by option bin()
- Width of a bar can be set by option width ()
- histogram varname, discrete produces a bar chart
- What stata calls a bar chart is the mean of second variable subdivided by category, rather than a frequency.
- Need to know:
(1) What is a typical value ("location")
(2) How much do the values vary ("scale")
- Simplest distribution to summarize is the normal distribution
- Other summary statistics (skewness, kurtosis etc) thought of relative to normal distribution.

What is the value of a "typical" observation? May be:

- (Arithmetic) Mean
- Median
- Other forms of mean
- Rarely used
- Only if data has been transformed

"Add them up and divide by how many there are."

$$
\begin{aligned}
\bar{x} & =\frac{x_{1}+x_{2}+\ldots+x_{n}}{n} \\
& =\left(\sum_{i=1}^{n} x_{i}\right) / n
\end{aligned}
$$

"Arrange in increasing order, pick the middle." If an even number of observations, take mean of middle two.

- Ignores the precise magnitude of most observations
- Contains less "information" than mean
- May be useful if there are outliers
- Less easy to use mathematically.

Consider this series of durations of absence from work due to sickness (in days).
1,1,2,2,3,3,4,4,4,4,5,6,6,6,6,7,8,10,10,38,80
Mean = 10
Median = 5
Very few observations are as large as the mean: median is more "typical".

How close to the "typical" value are other values.

- Range
- Inter-quartile range
- Variance

- The $x^{\text {th }}$ percentile is the value than which $x \%$ of observations are smaller and ($100-x$)\% are larger.
- The median is the 50th percentile.
- Other centiles can easily be calculated, eg 5th, 25th etc.

Range

- (Largest measurement) - (smallest measurement)
- Depends on only two measurements
- Can only increase as you add more to the sample

Inter-quartile Range

- (75th centile) - (25th centile).
- Less sensitive to extreme values
- Need fairly large numbers of observations

$$
\text { Standard Deviation }=\sqrt{\Sigma\left(x_{i}-\bar{x}\right)^{2} / n}
$$

- Nearly the average difference from the mean
- Uses information from every observation
- Not robust to outliers
- Variance is easy to use mathematically
- Standard deviation is the same units as the observations

Graphs by sex

- Symmetrical "Bell-shaped" distribution
- Easiest to use mathematically
- Many variables are normally distributed
- Can be described by two numbers
- Mean (measure of location)
- Standard Deviation (measure of variation)
- Normal distribution is symmetric.
- Asymmetric distributions are called "skewed":
- Positively skewed = some extremely high values (mean > median).
- Negatively skewed = some extremely low values (mean $<$ median).
- Distribution may have more than one "peak": bi-modal.
- Usually formed by mixing two different groups.

Bimodal Distribution

Positively Skewed Dist'n

- summarize varlist will give mean, SD, min and max
- summarize varlist, detail also gives percentiles
- tabstat or table can produce tables of summary statistics

Age in years: Mean (SD)
Spine BMD in g/cm²: Median (IQR)
Gender: n (\%)

	$63(7.9)$
	$1.05(0.78,1.30)$
Male	$1537(44)$
Female	$1924(56)$

- Quantitative variables
- Need a measure of location \& variation
- Normal variables: mean and SD
- Skewed variables: median and IQR
- Need to give units
- Qualitative variables
- Number and \% in each category

Very efficient summary of distribution:

- Shows median, upper and lower quartiles (25th and 75th percentiles)
- Also shows range of "normal" values and individual "unusual" values.
- Definitions of "normal" and "unusual" differ.
- Will demonstrate skewness, not bimodality.
- Stata command: graph box varname, [by (groupname)]

ENTRE FO ERSUS

Transforming Data

- Skewed distributions may be made symmetric by a transformation.
- Taking logs is the most common.
- Other transformations (e.g. square root, reciprocal) can be used, but can be very difficult to interpret.
- May be better to transform back to original units to present results.
- Geometric mean is back-transformation of mean of log-transformed data.
- Edward R. Tufte, The Visual Display of Quantitative Information was the classic text on statistical graphs.
- Huge data visualisation industry now

