# Survival Analysis

#### Mark Lunt

Centre for Epidemiology Versus Arthritis University of Manchester



06/12/2022

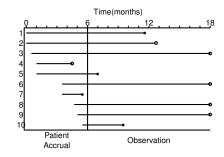
# Introduction

- Survival Analysis is concerned with the length of time before an event occurs.
- Initially, developed for events that can only occur once (e.g. death)
- Using time to event is more efficient that just whether or not the event has occured.
- It may be inconvenient to wait until the event occurs in all subjects.
- Need to include subjects whose time to event is not known (censored).



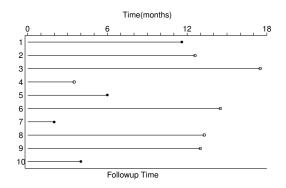
# Plan of Talk

- Censoring
- Describing Survival
- Comparing Survival
- Modelling Survival






- Exact time that event occured (or will occur) is unknown.
- Most commonly right-censored: we know the event has not occured yet.
- Maybe because the subject is lost to follow-up, or study is over.
- Makes no difference *provided* loss to follow-up is unrelated to outcome.




#### Censoring Examples: Chronological Time





#### Censoring Examples: Followup Time





# Other types of censoring

- Left Censoring:
  - Event had already occured before the study started.
  - Subject cannot be included in study.
  - May lead to bias.
- Interval Censoring:
  - We know event occured between two fixed times, but not exactly when.
  - E.g. Radiological damage: only picked up when film is taken.



Survivor function Stata Commands

## Describing Survival: Survival Curves

- Survivor function: S(t) probability of surviving to time t.
- If there are r<sub>k</sub> subjects at risk during the k<sup>th</sup> time-period, of whom f<sub>k</sub> fail, probability of surviving this time-period for those who reach it is

$$\frac{r_k - f_k}{r_k}$$

• Probability of surviving the end of the  $k^{th}$  time-period is the probability of surviving to the end of the  $(k - 1)^{th}$  time-period, times the probability of surviving the  $k^{th}$  time-period. i.e

$$S(k) = S(k-1) imes rac{r_k - f_k}{r_k}$$



Survivor function Stata Commands

# Motion Sickness Study

- 21 subjects put in a cabin on a hydraulic piston,
- Bounced up and down for 2 hours, or until they vomited, whichever occured first.
- Time to vomiting is our survival time.
- Two subjects insisted on ending the experiment early, although they had not vomited (censored).
  - Is censoring independent of expected event time ?
- 14 subjects completed the 2 hours without vomiting.
- 5 subjects failed



Introduction Censoring Describing Survival Comparing Survival

Survivor function Stata Commands

#### Motion Sickness Study Life-Table

| ID | Time | Censored | r <sub>k</sub> | $f_k$ | S(t)              |                 |
|----|------|----------|----------------|-------|-------------------|-----------------|
| 1  | 30   | No       | 21             | 1     | 20/21             | = 0.952         |
| 2  | 50   | No       | 20             | 1     | 19/20 × S(30)     | = 0.905         |
| 3  | 50   | Yes      | 19             | 0     | 19/19 × S(50)     | = <b>0.905</b>  |
| 4  | 51   | No       | 18             | 1     | 17/18 × S(50)     | = <b>0.855</b>  |
| 5  | 66   | Yes      | 17             | 0     | 17/17 × S(51)     | = <b>0.855</b>  |
| 6  | 82   | No       | 16             | 1     | 15/16 × S(66)     | = <b>0</b> .801 |
| 7  | 92   | No       | 15             | 1     | 14/15 × S(82)     | = <b>0</b> .748 |
| 8  | 120  | Yes      | 14             | 0     | 14/14 	imes S(92) | = <b>0</b> .748 |
| :  |      |          |                |       |                   |                 |
| 21 | 120  | Yes      | 14             | 0     | 14/14 	imes S(92) | = 0.748         |



Survivor function Stata Commands

## Kaplan Meier Survival Curves

- Plot of *S*(*t*) against (t).
- Always start at (0, 1).
- Can only decrease.
- Drawn as a step function, with a downwards step at each failure time.



Survivor function Stata Commands

## Stata commands for Survival Analysis

#### • stset: sets data as survival

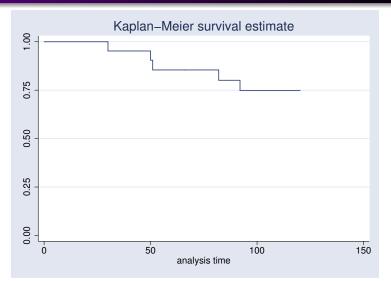
- Takes one variable: followup time
- Option failure = 1 if event occurred, 0 if censored
- sts list: produces life table
- sts graph: produces Kaplan Meier plot



Survivor function Stata Commands

#### Stata Output

sts list if group == 1


failure \_d: fail analysis time \_t: time

|      | Beg.  |      | Net  | Survivor | Std.   |          |          |
|------|-------|------|------|----------|--------|----------|----------|
| Time | Total | Fail | Lost | Function | Error  | [95% Con | f. Int.] |
|      |       |      |      |          |        |          |          |
| 30   | 21    | 1    | 0    | 0.9524   | 0.0465 | 0.7072   | 0.9932   |
| 50   | 20    | 1    | 1    | 0.9048   | 0.0641 | 0.6700   | 0.9753   |
| 51   | 18    | 1    | 0    | 0.8545   | 0.0778 | 0.6133   | 0.9507   |
| 66   | 17    | 0    | 1    | 0.8545   | 0.0778 | 0.6133   | 0.9507   |
| 82   | 16    | 1    | 0    | 0.8011   | 0.0894 | 0.5519   | 0.9206   |
| 92   | 15    | 1    | 0    | 0.7477   | 0.0981 | 0.4946   | 0.8868   |
| 120  | 14    | 0    | 14   | 0.7477   | 0.0981 | 0.4946   | 0.8868   |
|      |       |      |      |          |        |          |          |



Survivor function Stata Commands

#### Kaplan Meier Curve: example





# **Comparing Survivor Functions**

• Null Hypothesis Survival in both groups is the same

#### Alternative Hypothesis

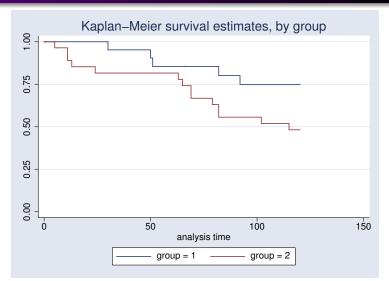
- Groups are different
- One group is consistently better
- One group is better at fixed time t
- Groups are the same until time t, one group is better after
- One group is worse up to time t, better afterwards.
- No test is equally powerful against all alternatives.



## **Comparing Survivor Functions**

#### Can use

- Logrank test
  - Most powerful against consistent difference
- Modified Wilcoxon Test
  - Most powerful against early differences
- Regression
- Should decide which one to use beforehand.




# Motion Sickness Revisited

- Less than 1/3 of subjects experienced an endpoint in first study.
- Further 28 subjects recruited
- Freqency and amplitude of vibration both doubled
- Intention was to induce vomiting sooner
- Were they successful ?



#### **Comparing Survival Curves**





## Comparison of Survivor Functions

- sts test group gives logrank test for differences between groups
- sts test group, wilcoxon gives Wilcoxon test

| Test     | $\chi^2$ | р     |
|----------|----------|-------|
| Logrank  | 3.21     | 0.073 |
| Wilcoxon | 3.18     | 0.075 |

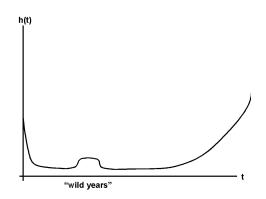


# What to avoid

- Compare mean survival in each group.
  - Censoring makes this meaningless
- Overinterpret the tail of a survival curve.
  - There are generally few subjects in tails
- Compare proportion surviving in each group at a fixed time.
  - Depends on arbitrary choice of time
  - Lacks power compared to survival analysis
  - Fine for description, not for hypothesis testing



The hazard function Cox Regression Proportional Hazards Assumption


# Modelling Survival

- Cannot often simply compare groups, must adjust for other prognostic factors.
- Predicting survival function S is tricky.
- Easier to predict the hazard function.
  - Hazard function *h*(*t*) is the risk of dying at time *t*, given that you've survived until then.
  - Can be calculated from the survival function.
  - Survival function can be calculated from the hazard function.
  - Hazard function easier to model



The hazard function Cox Regression Proportional Hazards Assumption

## The Hazard Function

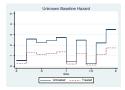


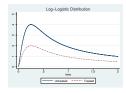
Hazard for all cause mortality for time since birth

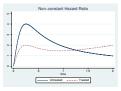


The hazard function Cox Regression Proportional Hazards Assumption

# **Options for Modelling Hazard Function**


- Parametric Model
- Semi-parametric models
  - Cox Regression (unrestricted baseline hazard)
  - Smoothed baseline hazard





The hazard function Cox Regression Proportional Hazards Assumption

#### **Comparing Hazard Functions**











The hazard function Cox Regression Proportional Hazards Assumption

# Parametric Regression

- Assumes that the shape of the hazard function is known.
- Estimates parameters that define the hazard function.
- Need to test that the hazard function is the correct shape.
- Was only option at one time.
- Now that semi-parametric regression is available, not used unless there are strong *a priori* grounds to assume a particular distribution.
- More powerful than semi-parametric if distribution is known



The hazard function Cox Regression Proportional Hazards Assumption

# Cox (Proportional Hazards) Regression

- Assumes shape of hazard function is unknown
- Given covariates **x**, assumes that the hazard at time *t*,

$$h(t,x)=h_0(t)\times\Psi(\mathbf{x})$$

where  $\Psi = \exp(\beta_1 x_1 + \beta_2 x_2 + ...)$ .

- Semi-parametric:  $h_0$  is non-parametric,  $\Psi$  is parametric.
- t affects  $h_0$ , not  $\Psi$
- **x** affects  $\Psi$ , not  $h_0$



The hazard function Cox Regression Proportional Hazards Assumption

#### Cox Regression: Interpretation

Suppose  $x_1$  increases from  $x_0$  to  $x_0 + 1$ ,

$$\begin{array}{rl} h(t,x_0) &= h_0(t) \times e^{(\beta_1 x_0)} \\ h(t,x_0+1) &= h_0(t) \times e^{(\beta_1 (x_0+1))} \\ &= h_0(t) \times e^{(\beta_1 x_0)} \times e^{\beta_1} \\ &= h(t,x_0) \times e^{\beta_1} \\ \Rightarrow & \frac{h(t,x_0+1)}{h(t,x_0)} &= e^{\beta_1} \end{array}$$

#### i.e. the **Hazard Ratio** is $e^{\beta_1}$



The hazard function Cox Regression Proportional Hazards Assumptior

- Results may be presented as  $\beta$  or  $e^{\beta}$
- $\beta > 0 \Rightarrow e^{\beta} > 1 \Rightarrow$  risk increased
- $\beta < 0 \Rightarrow e^{\beta} < 1 \Rightarrow risk decreased$
- Should include a confidence interval.



The hazard function Cox Regression Proportional Hazards Assumption

# Cox Regression: Testing Assumptions

- We assume hazard ratio is constant over time: should test.
- Possible tests:
  - Plot observed and predicted survival curves: should be similar.
  - Plot log(- log (S(t))) against log(t) for each group: should give parallel lines.
  - Formal statistical test:
    - Overall
    - Each variable
- May need to fit interaction between time period and predictor: assume constant hazard ratio on short intervals, not over entire period.



The hazard function Cox Regression Proportional Hazards Assumption

# Cox Regression in Stata

- stcox varlist performs regression using varlist as predictors
- Option nohr gives coefficients in place of hazard ratios



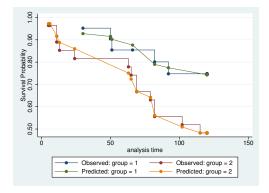
The hazard function Cox Regression Proportional Hazards Assumption

# **Testing Proportional Hazards**

- stcoxkm produced plots of observed and predicted survival curves
- stphplot produces log(- log (S(t))) against log(t) (log-log plot)
- estat phtest gives overall test of proportional hazards
- estat phtest, detail gives test of proportional hazards for each variable.



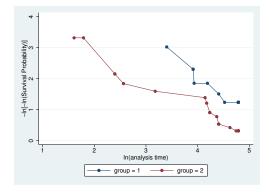
The hazard function Cox Regression Proportional Hazards Assumption


# Cox Regression: Example

| . stcox 1.group   |             |               |   |         |        |   |        |
|-------------------|-------------|---------------|---|---------|--------|---|--------|
| Cox regression    | Breslow met | thod for ties | 3 |         |        |   |        |
| No. of subjects = | 4           | 49            |   | Number  | of obs | = | 49     |
| No. of failures = | 1           | 19            |   |         |        |   |        |
| Time at risk =    | 445         | 57            |   |         |        |   |        |
|                   |             |               |   | LR chi2 | 2(1)   | = | 3.32   |
| Log likelihood =  | -67.29645   | 58            |   | Prob >  | chi2   | = | 0.0685 |
|                   |             |               |   |         |        |   |        |
| _t   Ha           |             | Std. Err.     |   |         |        |   |        |
| 2.group           |             |               |   |         |        |   |        |
|                   |             |               |   |         |        |   |        |



The hazard function Cox Regression Proportional Hazards Assumption


#### Testing Assumptions: Kaplan-Meier Plot





The hazard function Cox Regression Proportional Hazards Assumption

# Testing Assumptions: log-log plot





The hazard function Cox Regression Proportional Hazards Assumption

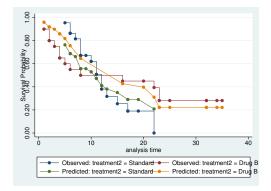
#### **Testing Assumptions: Formal Test**

. estat phtest

| Test of proportional hazards assumption |      |    |           |  |  |  |  |  |
|-----------------------------------------|------|----|-----------|--|--|--|--|--|
|                                         | chi2 | df | Prob>chi2 |  |  |  |  |  |
| global test                             | 0.03 | 1  | 0.8585    |  |  |  |  |  |
|                                         |      |    |           |  |  |  |  |  |



The hazard function Cox Regression Proportional Hazards Assumption


# Allowing for Non-Proportional Hazards

- Effect of covariate varies with time
- Need to produce different estimates of effects at different times
- Use stsplit to split one record per person into several
- Fit covariate of interest in each time period separately



The hazard function Cox Regression Proportional Hazards Assumption

#### Non-Proportional Hazards Example





The hazard function Cox Regression Proportional Hazards Assumption

#### Non-Proportional Hazards Example

. stcox i.treatment2

| _t   Haz. Rat:       | Lo Std. Err. | z P> z      | [95% Conf. | Interval] |
|----------------------|--------------|-------------|------------|-----------|
|                      |              |             |            |           |
| treatment2   .746282 | .3001652     | -0.73 0.467 | .3392646   | 1.641604  |
|                      |              |             |            |           |

. estat phtest

Test of proportional hazards assumption

Time: Time

| I. I.       | chi2  | df | Prob>chi2 |
|-------------|-------|----|-----------|
|             |       |    |           |
| global test | 10.28 | 1  | 0.0013    |
|             |       |    |           |



The hazard function Cox Regression Proportional Hazards Assumption

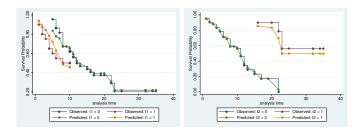
# Non-Proportional Hazards Example: Fitting time-varying effect

stsplit period, at(10)
gent1 - treatment2+(period -- 0)
gent2 - treatment2+(period -- 10)
. stcox t1 t2

| _t | Haz. | Ratio  | Std. | Err. | Z     | ₽> z  | [95%  | Conf. | Interval] |
|----|------|--------|------|------|-------|-------|-------|-------|-----------|
| +  |      |        |      |      |       |       |       |       |           |
| t1 | 1.   | 836938 | .873 | 408  | 1.28  | 0.201 | .7231 | 1357  | 4.666262  |
| t2 | .1   | 020612 | .085 | 3529 | -2.73 | 0.006 | .0198 | 8156  | .5256703  |
|    |      |        |      |      |       |       |       |       |           |

. estat phtest

Test of proportional hazards assumption


Time: Time

| 1           | chi2 | df | Prob>chi2 |
|-------------|------|----|-----------|
|             |      |    |           |
| global test | 1.34 | 2  | 0.5114    |
|             |      |    |           |



The hazard function Cox Regression Proportional Hazards Assumption

#### Non-Proportional Hazards Example





The hazard function Cox Regression Proportional Hazards Assumption

## Time varying covariates

- Normally, survival predicted by baseline covariates
- Covariates may change over time
- Can have several records for each subject, with different covariates
- Each record ends with a censoring event, unless the event of interest occurred at that time
- Need to have unique identifier for each individual so that stata knows which observations belong together
- $\bullet$  Option  ${\tt tvc}$  ( ) is for variables that increase linearly with time

