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1. Introduction

Propensity scores can be very useful in the analysis of observational studies. They enable
us to balance a large number of covariates between two groups (referred to as exposed and
unexposed in this tutorial) by balancing a single variable, the propensity score. There are three
ways to use the propensity score to do this balancing: matching, stratification and weighting.
We will explore all three ways in this tutorial.

Propensity models depend on the potential outcomes model popularized by Don Rubin[1]].
In this model, we assume every subject has two potential outcomes: one if they were treated,
the other if they are not treated. The aim is to compare treated subjects to untreated subjects
with the same potential outcomes: this ensures that the difference between treated and un-
treated subjects is due to the treatment, since the outcomes in both groups would have been
the same had the treated subjects not received treatment. Rosenbaum and Rubin [2] have
shown that subjects with the same propensity score have, on average, the same potential out-
comes, so comparing treated and untreated subjects with the same propensity score gives an
unbiased estimate of the effect of treatment.

1.1. The data used in this tutorial

We will use simulated data for this tutorial, since that way we can know what the correct
answer is, and compare the results we get with different methods with the correct answer. The
outcome we are interested in is the variable y, which is normally distributed. The treatment
variable, t, has the effect of reducing y by 1. However, there are three confounding variables,
x1, x2 and x3: an increase in any of these variables increases the probability of receiving
treatment, and also increases the outcome y. So you can think of y as being a measure of
disease severity, with those with the highest disease severity being more likely to receive
treatment. This data can be loaded into stata with the commands

global datadir http://personalpages.manchester.ac.uk/staff/mark.lunt
use "S$datadir/pg_example.dta"

1.2. Additional programs required

I have written some ado-files which make analysis with propensity scores a little easier, and
which we will use throughout this tutorial. They can be downloaded by entering the following
command in stata:

net from http://personalpages.manchester.ac.uk/staff/mark.lunt

then clicking on “propensity” and finally clicking on “click here to install”. We
will also use the pbalchk command which can be installed in the same way.



2. Checking Balance

Before we start analysing the data, it will be useful to see how big a problem we have. We will
therefore compare all of the confounders between the treated and untreated. One way to do
this is with the tabstat command: Listing (1| shows how we can get the mean and standard
deviation for each variable in the treated and untreated.

Listing 1 Mean and standard deviation of confounders in treated and untreated subjects

. tabstat xx, by (t) statistics(mean sd) columns (statistics)

Summary for variables: x1 x2 x3
by categories of: t

-.4172519
6.118413
39.39428

.4777602
7.992944
45.37631
.0087739

7.01069

.8412321
1.690448
7.560781

.943132
1.845908
11.72876

.9968548
1.998652

42.24173 10.21349

We can see that there is a difference of about 1 in x1, 2 in x2 and 6 in x3. However,
since we don’t know the units in which these variables are measured in, we don’t know if the
difference in x3 is more important than the difference in x1 or not. We could do a significance
test, but that is very sample-size dependent, and does not tell us how big any differences
between treated and untreated are. We are better looking at “standardised differences”: the

difference in terms of standard deviations.
We can get this data easily from the pbalchk program, the syntax of which is

pbalchk treatvar testvars

where treatvar is the treatment variable (in our case t) and testvars are the potential
confounders, in our case x1, x2 and x3. The result from pbalchk is shown in Listing @

Listing 2 Checking balance of confounders between treated and untreated
. pbalchk t x1 x2 x3

Mean in treated Mean in Untreated Standardised diff.

x1 | 0.48 -0.42 -0.949
x2 | 7.99 6.12 -1.016
x3 | 45.38 39.39 -0.510

Warning: Significant imbalance exists in the following variables:
x1l x2 x3




The output shows us that the treated and untreated differ by about 1 SD in x1 and x2, and
by 0.5 SD in x3. So the treated and untreated are more similar in x3 than they are in x1 or x2.

3. Calculating Propensity Scores

3.1. Using Logistic Regression

We use logistic regression to calculate the propensity scores. The stata commands to do this
are

logistic t x1 x2 x3
predict propensity

We can now look at the distributions of the propensity score in the treated and the untreated
with the command

graph tw kdensity propensity if t == 0 || ///
kdensity propensity if t == 1

The output of this command is shown in Figure [I You can see that propensity scores
tend to be higher in the treated than the untreated, but because of the limits of 0 and 1 on the
propensity score, both distributions are skewed.
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Figure 1: Distributions of Propensity Score



For this reason, it is sometimes recommended to work with the log of the odds of the
propensity score (sometimes called the linear predictor), rather than the propensity score it-
self, since it tends to be more normally distributed. We can obtain and graph this with the

commands

predict lp, xb
graph tw kdensity lp if t == || kdensity lp if t ==

The result is shown in Figure [2f a much more normal distribution in both subgroups.
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Figure 2: Distributions of Log Odds of Propensity Score

3.2. Diagnostics for the propensity score

Having calculated a propensity score, we need to check that it is correct. If there are important
confounders that we have not measured, the propensity score will not work, and there is no
way really of testing that. However, if we have got the functional form of our regression
equation wrong, a Hosmer-Lemeshow test will show that. Listing [3|shows the command to do

this and the resultant output.



Listing 3 Hosmer-Lemeshow test on initial propensity model
. estat gof, group(l0) table

Logistic model for t, goodness-of-fit test

(Table collapsed on quantiles of estimated probabilities)

e +
| Group | Prob | Obs_1 | Exp_1l | Obs_0 | Exp_0 | Total
| ——————= o o Fo——— o Fo——— o
| 1 | 0.1397 | 26 | 17.5 | 174 | 182.5 | 200 |
| 2 | 0.2243 | 43 | 37.1 | 157 | 162.9 | 200
| 3 | 0.3021 | 51 | 51.9 | 149 | 148.1 | 200
| 4 | 0.3890 | 58 | 68.7 | 142 | 131.3 | 200 |
| 5 | 0.4650 | 69 | 85.0 | 131 | 115.0 | 200
| —————— o o +——— o o -
| 6 | 0.5436 | 98 | 101.2 | 102 | 98.8 | 200 |
| 7 | 0.6417 | 110 | 118.3 | 90 | 81.7 | 200
| 8 | 0.7336 | 153 | 137.4 | 47 | 62.6 | 200 |
| 9 | 0.8277 | 168 | 156.2 | 32 | 43.8 | 200 |
| 10 | 0.9832 | 176 | 178.5 | 24 | 21.5 | 200 |
e +

numpber of observations = 2000

number of groups = 10
Hosmer-Lemeshow chi2 (8) = 25.14
Prob > chi2 = 0.0015

You can see that the test is significant, showing that the logistic regression model does not
fit our data well. This suggests that either there is a non-linearity in the relationships between
the confounders and the log odds of being treated, or there is an interaction between two of
the confounders. We can find out which by generating and testing all 3 squared terms (x1%*x1,
x2*x2 and x3*x3) and all 3 interaction terms (x1*x2, x1*x3, x2*x3). Some code to achieve
this with not too much typing is given in Listing 4]

Listing 4 Testing interactions in propensity model

foreach var of varlist x1 x2 x3 {
foreach var2 of varlist x1 x2 x3 {
capture drop temp
gen temp = ‘var’
logit t x1 x2 x3 temp
di "Testing ‘var’ * ‘var2’"
estat gof, table group(10)

* ‘var2’

If you run this code, you will see that the best fit is achieved when x3*x3 is added to the
model (Listing [5):



Listing 5 Goodness of fit of improved propensity model
gen x32 = x3 * x3

logit t x1 x2 x3 x32

Logistic regression Number of obs = 2000
LR chi2 (4) = 877.82

Prob > chi2 = 0.0000

Log likelihood = -945.07838 Pseudo R2 = 0.3171
t | Coef. std. Err. b4 P>|z]| [95% Conf. Interval]
,,,,,,,,,,,,, o
x1 | .9236019 .1041029 8.87 0.000 .7195641 1.12764

x2 | .4648093 .0440131 10.56 0.000 .3785452 .5510734

x3 | -.8005345 .0544132 -14.71 0.000 -.9071825 -.6938866

x32 | .0095544 .000661 14.46 0.000 .008259 .0108498

cons | 12.597 1.088999 11.57 0.000 10.4626 14.7314

estat gof, table group(10)

Logistic model for t, goodness-of-fit test

(Table collapsed on quantiles of estimated probabilities)

+-- +
| Group | Prob | Obs_1 | Exp_1 | Obs_0 | Exp_0 | Total |
| ——————— o - o o e o
| 1] 0.0968 | 12 | 11.4 | 188 | 188.6 | 200
| 2 | 0.1659 | 25 | 26.1 | 175 | 173.9 | 200 |
| 3 | 0.2414 | 41 | 40.6 | 159 | 159.4 | 200
| 4 | 0.3316 | 59 | 56.9 | 141 | 143.1 | 200
| 5 | 0.4316 | 76 | 75.7 | 124 | 124.3 | 200 |
| —————— - +—————— t————— - t—————— o
| 6 | 0.5519 | 91 | 98.1 | 109 | 101.9 | 200
| 71 0.6777 | 128 | 122.4 | 72 | 77.6 | 200
| 8 | 0.8153 | 148 | 148.6 | 52 | 51.4 | 200 |
| 9 | 0.9438 | 176 | 175.9 | 24 | 24.1 | 200 |
| 10 | 1.0000 | 196 | 196.3 | 4 | 3.7 | 200 |
e +

number of observations = 2000

number of groups = 10
Hosmer—-Lemeshow chi2 (8) = 1.90
Prob > chi2 = 0.9839

The fit of this model is now very good, so we will save the propensity score and linear
predictor from this model to use later.

predict prop2
predict 1p2, xb

There are (at least) two other approaches we could have used to determine which variable
was causing the poor fit in the propensity model. One is to look at the observed and expected
proportion of subjects treated at each level of the confounder. An easy way to do this is to
use lowess smoothed plots: the lines corresponding to the observed and predicted proportions
should be parallel if we have got the model correct. The commands to produce these plots for
x1 and x3 are

gr tw lowess t x1 || lowess propensity x1
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Figure 3: Comparison of observed and predicted associations between confounders and treat-

ment
gr tw lowess t x3 || lowess propensity x3
gr tw lowess t x1 || lowess prop2 xl1
gr tw lowess t x3 || lowess prop2 x3

and the plots themselves are given in Figure 3]
It is clear that we had the wrong functional form for x3 in our initial propensity score, but

that it was correct in the second one (prop2).
The other alternative is to fit different functions of the confounders in the propensity model
and see if the fit of the model improves. You can either generate your own variables to do this:

gen x12 = x17°2

gen x13 = x1°3

to generate the square and cube of x1, or use stata’s fracpoly command, which fits various
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functions of the first variable in the list of predictors to test if a non-linear association is
present. The results of using fracpoly to test x1 and x3 are given in Listing [¢]

Although fitting a non-linear function of x1 improved the fit of the model, this was due to
its correlation with x3: allowing x3 to have a non-linear association produced a dramatically
better improvement in the fit of the model.

3.3. Using the propensity score

We mentioned above that there are three ways to use the propensity score: matching, stratifi-
cation and weighting.

3.3.1. Stratification

The simplest method is stratification: we divide our subjects into strata based on the propensity
score, and look at the effect of treatment within strata. Listing [/| shows how to generate
quintiles of the propensity score, and gives a cross-tabulation of treatment by quintile.

As you can see, there are some treated and some untreated subjects in every quintile of
the propensity score, so it is possible to assess the effect of treatment in each quintile. In the
lowest quintile, over 90% of subjects do not receive treatment, whilst in the highest quintile,
over 90% do receive treatment.

Quintiles are commonly used for adjustment, since they are expected to remove 90% of the
confounding [3]]. However, the smaller the strata are, the better they will balance the covariates
and the more confounding they will remove. To illustrate this, we will also created deciles of
the propensity score (Listing [8)):

11



Listing 6 Using fracpoly to test for non-linearity

fracpoly logit t x1 x2 x3

Logistic regression

Number of obs

2000
604.09
0.0000
0.2182

.6370464
.4320718
.4917222
-.0013354
-.2177191

LR chi2 (4) =
Prob > chi2 =
Log likelihood = -1081.9432 Pseudo R2
t | Coef Std. Err z P>|z| [95% Conf.
_____________ o
Ixl__1 | -1.285783 .3309939 -3.88 0.000 -1.934519
Ixl__ 2 | .3267525 .0537353 6.08 0.000 .2214332
Ix2_ 1 | .4126267 .0403556 10.22 0.000 .3335312
Ix3__ 1 | -.015576 .0072658 -2.14 0.032 -.0298167
_cons | —.3419402 .0633793 -5.40 0.000 -.4661613
Deviance: 2163.89. Best powers of x1 among 44 models fit: 1 2

estat gof, group(10)

Logistic model for t, goodness-of-fit test

number of observations
numpber of groups
Hosmer—-Lemeshow chi2 (8)
Prob > chi2

fracpoly logit t x3 x2 x1

Logistic regression

Log likelihood = -944.14098

2000
10
15.72
0.0466

Number of obs

2000
879.70
0.0000
0.3178

t Coef std. Err

Ix3__ 1 -4.433401 .3000949
Ix3__2 .0816554 .0056721
Ix2__ 1 .4624106 .0439802
Ix1l__ 1 .9306171 .1042095
cons -.9380883 .0760635

LR chi2 (4) =

Prob > chi2 =

Pseudo R2
P>|z]| [95% Conf.
0.000 -5.021576
0.000 .0705382
0.000 .376211
0.000 .7263703
0.000 -1.08717

-3.845226
.0927725
.5486102
1.134864

-.7890067

Deviance: 1888.28. Best powers of x3 among 44 models fit: 1 3.

estat gof, group(10)

Logistic model for t, goodness-of-fit test

(Table collapsed on quantiles of estimated probabilities)

number of observations =

number of groups
Hosmer-Lemeshow chi2 (8)
Prob > chi?2

2000
10
2.47
0.9632

12



Listing 7 Stratifying into quintiles of propensity score

xtile pg = 1lp2, n(5)

tab pg t, ro

Fom +
| Key |
| mmmmm oo !
| frequency |
| row percentage |
f————— +

5
quantiles | t

of 1lp2 | 0 1 Total

___________ e

1 363 37 | 400

| 90.75 9.25 | 100.00

,,,,,,,,,,, S

2 | 300 100 | 400

| 75.00 25.00 | 100.00

,,,,,,,,,,, T

3| 233 167 | 400

| 58.25 41.75 | 100.00

___________ g

4 | 124 276 | 400

| 31.00 69.00 | 100.00

,,,,,,,,,,, S

5 | 28 372 | 400

| 7.00 93.00 | 100.00

,,,,,,,,,,, o

Total | 1,048 952 | 2,000

| 52.40 47.60 | 100.00
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Listing 8 Stratifying into deciles of propensity score
. xtile p_d = 1p2, n(10)

. tab p_d t, ro

10 |

quantiles | t
of 1p2 | 0 1] Total
___________ g
1 188 12 | 200
| 94.00 6.00 | 100.00
,,,,,,,,,,, o
2 | 175 25 | 200
| 87.50 12.50 | 100.00
,,,,,,,,,,, S
3 159 41 | 200
| 79.50 20.50 | 100.00
___________ g
4 | 141 59 | 200
| 70.50 29.50 | 100.00
,,,,,,,,,,, g
5 | 124 76 | 200
| 62.00 38.00 | 100.00
,,,,,,,,,,, S
6 | 109 91 | 200
| 54.50 45.50 | 100.00
___________ g
7 72 128 | 200
| 36.00 64.00 | 100.00
,,,,,,,,,,, g
8 | 52 148 | 200
| 26.00 74.00 | 100.00
,,,,,,,,,,, S
9 | 24 176 | 200
| 12.00 88.00 | 100.00
___________ gy
10 | 4 196 | 200
| 2.00 98.00 | 100.00
___________ g
Total | 1,048 952 | 2,000
| 52.40 47.60 | 100.00

We still have both treated and untreated subjects in every stratum, so we can use this
stratification in our analysis.

3.3.2. Weighting

The second way to use the propensity score is to reweight the data. I will spare you the gory
details, I will just say that by reweighting, we ensure that the distribution of confounders is
the same in the treated and untreated subjects, so they are no longer confounders. Sato and
Matsuyama [4] have written a good, comprehensible introduction to how weighting works if
you are interested.

In practice, we commonly use two kinds of weights: inverse probability of treatment (IPT)
weights and SMR weights. IPT weights change the distribution of confounders in both the
treated and untreated subjects so that they are the same as the distribution in the entire sam-
ple. The IPT weighted analysis therefore compares what we would expect to see if everyone
received treatment to what we would expect to see if no-one received treatment. SMR weights

14



do not change the distribution in the treated, and change the distribution in the untreated to
match it. They therefore compare what happened to the treated subjects with what would have
happened to them if they had remained untreated. If we assume that treatment has the same ef-
fect on everyone (as in this simulated data), these two analyses are estimating the same thing.
However, if we assume that subjects who will benefit more from treatment are more likely to

be given it, a very reasonable assumption, the SMR effect will be greated than the IPT effect.
The program propwt can be used to create both IPT and SMR weights. For full details of
the syntax, type

help propwt

into stata, but for now, simply enter the command
propwt t prop2, ipt smr

This will create two new variables, smr_wt and ipt_wt which we will use later.

3.3.3. Matching

There are a huge number of ways of performing matching, which I am not going to discuss
here: Rosenbaum has written some accessible papers on the subject ([S, 16]). I am simply

going to show one method of obtaining matches.

We are going to use greedy matching. That is, we will compare every treated subject to
every untreated subject, and find the closest match we can. These subjects will be paired off,
then we will compare the remaining subjects and pick the best match. This procedure will
continue until there are no more possible pairings. The program gmatch will do this for us,
using the command

gmatch t 1lp2, set(setl) diff(diffl)

This stores a case-control pair identifier in set 1, and the magnitude of the difference between
the case and the control in di ff1.

However, there is a problem here, as we can see if we look at the distribution of the
differences within each set (Figure [d)). At first, we had a lot of very good matches, but at a
certain point, the matches became very poor. Since we insisted on finding a match for every
treated subject, and we don’t have enough suitable matches, we end up accepting unsuitable

matches.

We can improve on this matching by insisting that matched pairs cannot differ by more
than a fixed amount referred to as a caliper. This will limit the number of matches we can
make, but ensure that the matches are good. Zooming in on the left hand end of the histogram
in Figure 4 with the command

histogram diffl if diffl < 0.2

suggests that a caliper of 0.1 would be appropriate, so lets use that:
gmatch t 1p2, set(set2) diff(diff2) cal(0.1)

The differences are now all relatively small, as shown in Figure E}

15



diffl

Figure 4: Distribution of case-control differences after naive matching

4. Rechecking Balance

4.1. Stratification

We can check the balance after stratification by giving the strata option to pbalchk, as
shown in Listing 9]

Listing 9 Checking balance of confounders between treated and untreated after stratifying into

quintiles
. pbalchk t x1 x2 x3, strata(pqg)

i.pg _Spg_1-5 (naturally coded; _Spqg_l omitted)
Mean in treated Mean in Untreated Standardised diff.

x1 | 0.48 0.41 -0.069
x2 | 7.99 7.87 -0.067
x3 | 45.38 44.80 -0.049

The differences are now much smaller than before: all less than 0.1 SD. This suggests that
the balancing has been successful. However, we do get better balance if we use 10 strata rather

than 5, as seen in Listing

16
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Figure 5: Distribution of case-control differences after matching with a caliper of 0.1

Listing 10 Checking balance of confounders between treated and untreated after stratifying

into deciles
. pbalchk t x1 x2 x3, strata(p_d)

i.p_d _Sp_d_1-10 (naturally coded; _Sp_d_1 omitted)
Mean in treated Mean in Untreated Standardised diff.

x1 | 0.48 0.46 -0.020
x2 | 7.99 7.96 -0.017
x3 | 45.38 45.20 -0.015

The balance is now markedly better on all three variables.

4.2. Weighting

To check the balance between treated and untreated after weighting, we use the wt () option
to pbalchk. Both sets of weights also improve the balance of all three covariates markedly:
they have done better than quintiles but not as well as deciles (Listing[TT).

17



Listing 11 Checking balance of confounders between treated and untreated after weighting
. pbalchk t x1 x2 x3, wt(ipt_wt)

Mean in treated Mean in Untreated Standardised diff.

x1 | 0.01 0.02 0.005
x2 | 7.08 7.02 -0.034
x3 | 42.25 41.81 -0.037

. pbalchk t x1 x2 x3, wt(smr_wt)

Mean in treated Mean in Untreated Standardised diff.

x1 | 0.48 0.52 0.044
x2 | 7.99 8.06 0.038
x3 | 45.38 44.59 -0.067

Note that whilst the distribution of all three confounders is similar in the treated and un-
treated subjects with both weighting schemes, the actual means differ between the weightings:
x2 is about 7 with IPT weights and about 8 with SMR weights, for example.

4.3. Matching

As we saw earlier, our first attempt at matching produced some very poor matches, so we
would not expect that to do a good job of balancing the confounders. This is shown to be true
in Listing [12] (note that only subjects who were matched will have a non-missing value for
set1, so unmatched subjects are excluded but the clause if setl < .).

Listing 12 Checking balance of confounders between treated and untreated after naive match-

mng
. pbalchk t x1 x2 x3 if setl < .

Mean in treated Mean in Untreated Standardised diff.
x1 | 0.48 -0.30 -0.829
X2 | 7.99 6.36 -0.884
%3 | 45.38 39.64 -0.489

Warning: Significant imbalance exists in the following variables:
x1 x2 %3

However, the restricted matching did balance the confounders much better (Listing [T3):
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Listing 13 Checking balance of confounders between treated and untreated after matching

within caliper
. pbalchk t x1 x2 x3 if set2 != .

Mean in treated Mean in Untreated Standardised diff.

x1 | 0.01 -0.01 -0.025
x2 | 7.06 7.03 -0.020
x3 | 40.86 40.63 -0.027

5. Assessing the effect of treatment

5.1. Naively

If we were to compare the outcome between the two treatment groups without allowing for
the presence of confounding, we would get a biased estimate of the effect of treatment. This
analysis is given in Listing[T4]

Listing 14 Naive analysis of the effect of treatment

. regress y t

Source | SS df MS Number of obs = 2000
————————————— Fmm F( 1, 1998) = 140.71
Model | 172.114155 1 172.114155 Prob > F = 0.0000
Residual | 2443.8897 1998 1.22316802 R-squared = 0.0658
7777777777777 - Adj R-squared = 0.0653
Total | 2616.00386 1999 1.30865626 Root MSE = 1.106

y | Coef. Std. Err. t P>t [95% Conf. Intervall]
,,,,,,,,,,,,, e
t | -.5873868 .0495175 -11.86 0.000 -.6844982 -.4902754

cons | .0448315 .0341635 1.31 0.190 -.0221684 .1118313

The observed effect of treatment (-0.59) is markedly less than the true effect (-1), and
indeed the true effect does not lie in the 95% confidence interval.

5.2. Stratification

In order to look at the effect of treatment within strata of the propensity score, we add indicator
variables for the strata to the regression equation, as shown in Listing
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Listing 15 Analysis of the effect of treatment, stratifying by propensity score in 5 strata

xi:
i.pg

Source

Model
Residual

—_ 4 — — 4+ —

regress y t i.pg
_Ipgq 1-5

5 66.601398

333.00699
2282.99687

2616.00386

Number of obs
F( 5, 1994)
Prob > F
R-squared

Adj R-squared
Root MSE

(naturally coded; _Ipg_1l omitted)

2000
= 58.17
= 0.0000
= 0.1273
= 0.1251
= 1.07

[95% Conf.

Interval]

-.9521784
-.1253259
.0110136
.2584805
.8192614
.0257863

1994 1.14493323
1999 1.30865626
Std. Err t
.060055 -15.86
.0762505 -1.64
.0781384 0.14
.0837391 3.09
.0908535 9.02
.0537884 0.48

-1.069955
—.2748648
-.1422279
.0942551
.6410836
-.079701

—.8344013
.024213
.1642552
.4227059
.9974391
.1312737

The estimated treatment effect (-0.95) is now much closer to the true value (-1). Most of
the confounding was removed by stratification, but not all. Received wisdom is that 5 strata
will remove about 90% of confounding, and that seems to be the case here. Adjusting using
10 strata is more successful, as we would expect from the fact that it balanced the covariates
better, as seen in Listing[T6]

Listing 16 Analysis of the effect of treatment, stratifying by propensity score in 10 strata

xi: regress y t i.p_d

i.p_d _Ip_d_1-10 (naturally coded; _Ip_d_1 omitted)
Source | SS df MS Number of obs = 2000
7777777777777 - F( 10, 1989) = 40.74
Model | 444.719762 10 44.4719762 Prob > F = 0.0000
Residual | 2171.28409 1989 1.0916461 R-squared = 0.1700
————————————— e Adj R-squared = 0.1658
Total | 2616.00386 1999 1.30865626 Root MSE = 1.0448
v | Coef Std. Err t P>t [95% Conf. Intervall]
_____________ o
t | -.9921445 .0589945 -16.82 0.000 -1.107842 -.876447
_Ip_d 2 | -.1188487 .1045522 -1.14 0.256 -.323892 .0861947
_Ip_d 3 | -.1933323 .1048315 -1.84 0.065 -.3989233 .0122587
_Ip.d 4 | -.1635789 .1053976 -1.55 0.121 -.3702803 .0431224
_Ip_d 5 | -.1454589 .1061737 -1.37 0.171 -.3536822 .0627644
_Ip_d 6 | .0746155 .107049 0.70 0.486 -.1353244 .2845554
_Ip_d 7 | .155955 .109942 1.42 0.156 -.0596586 .3715686
_Ip_d_8 | .2899168 .1119186 2.59 0.010 .0704268 .5094068
Ip_d 9 | .2832083 .1151375 2.46 0.014 .0574055 .5090111
Ip_d_10 | 1.303409 .117738 11.07 0.000 1.072506 1.534312
cons | .0889075 .0739646 1.20 0.229 -.0561487 .2339637

The estimated treatment effect, -0.99, is now almost exactly equal to the true value of -1.



5.3. Weighting

In order to use the IPT and SMR weights in an analysis, we need to specify them as part of
the stata command. The syntax is to add [pw=wt_var] to the command before any options,
where wt_var is the name of the variable to use for the weighting. The results of using both
IPT and SMR weights are given in Listing

Listing 17 Analysis of the effect of treatment, using weighting

. xi: regress y t [pw=ipt_wt]
(sum of wgt is 1.9748e+03)

Linear regression Number of obs = 2000
F( 1, 1998) = 149.07
Prob > F = 0.0000
R-squared = 0.1382
Root MSE = 1.072

| Robust
vy | Coef Std. Err t P>t [95% Conf. Intervall]
,,,,,,,,,,,,, o
t | -.8589639 .0703525 -12.21 0.000 -.9969359 -.7209919
cons | .1351195 .0539146 2.51 0.012 .0293848 .2408541

. xi: regress y t [pw=smr_wt]
(sum of wgt is 9.3002e+02)

Linear regression Number of obs = 2000
F( 1, 1998) = 52.00
Prob > F = 0.0000
R-squared = 0.1124
Root MSE = 1.0984

| Robust
v | Coef. Std. Err. t P>t [95% Conf. Intervall]
_____________ o
t | -.7816477 .1083953 -7.21 0.000 -.9942274 -.5690681
cons | .2390924 .1016333 2.35 0.019 .0397741 .4384107

Although markedly better than the naive estimate, these estimates are not as good as those
obtained through stratifying. One reason for this can be seen in Figure 2] There are treated
subjects who have higher propensities than any untreated subject, and hence we have no suit-
able comparison subjects for them. Equally, there are untreated subjects with lower propen-
sities than any treated subject (but not as many). Strictly, when doing propensity analysis,
we should restrict our analysis to subjects on the “common support”, that is restricted to the
range of propensity scores at which we observe both treated and untreated subjects. Listing
[18]shows how to calculate the common support and restrict the analysis to it.
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Listing 18 Analysis of the effect of treatment, using weighting, restricted to common support
. bys t: summ prop2

-> t =0
Variable | Obs Mean Std. Dev Min Max
,,,,,,,,,,,,, o
prop2 | 1048 .2978684 .2170018 .0037738 .9868041
-1
Variable | Obs Mean Std. Dev Min Max
,,,,,,,,,,,,, o
prop2 | 952 .6720945 .2659372 .0280815 .9999992

. xi: regress y t [pw=ipt_wt] if prop2 <= 0.9868041 & prop2 >= 0.0280815
(sum of wgt is 1.9136e+03)

Linear regression Number of obs = 1875
F( 1, 1873) = 166.85
Prob > F = 0.0000
R-squared = 0.1630
Root MSE = 1.0489
| Robust

y | Coef. std. Err. t P>t [95% Conf. Interval]
,,,,,,,,,,,,, o
t | -.9269146 .0717594 -12.92 0.000 -1.067651 -.7861777
_cons | .1307708 .0545776 2.40 0.017 .0237315 .2378101

. xi: regress y t [pw=smr_wt] if prop2 <= 0.9868041 & prop2 >= 0.0280815

(sum of wgt is 8.8311e+02)
Linear regression Number of obs = 1875
F( 1, 1873) = 72.27
Prob > F = 0.0000
R-squared = 0.1582
Root MSE = 1.0591
| Robust

v o Coef. Std. Err. t P>|t]| [95% Conf. Intervall]
_____________ o
t | -.9206137 .108293 -8.50 0.000 -1.133001 -.708226
cons | .2389587 .1016888 2.35 0.019 .0395234 .4383941

The largest propensity score in the untreated was 0.9868041 and the smallest in the treated
was 0.0280815. Restricting our analysis to subjects within this range means that we lost 125
subjects, but the effect estimates are less biased.

5.4. Matching

We would not expect the initial matching we did to perform very well at removing bias, and
this is borne out by Listing[T9]
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Listing 19 Analysis of the effect of treatment, using naive matching

regress y t if setl != .

Source | SS df MS Number of obs = 1904
7777777777777 Fm F( 1, 1902) = 122.70
Model | 151.086553 1 151.086553 Prob > F = 0.0000
Residual | 2341.96921 1902 1.23131925 R-squared = 0.0606
7777777777777 Fom Adj R-squared = 0.0601
Total | 2493.05577 1903 1.31006609 Root MSE = 1.1096

v | Coef Std. Err t P>t [95% Conf. Interval]
_____________ o
t | -.5633904 .0508606 -11.08 0.000 -.6631389 -.4636419

cons | .0208351 .0359639 0.58 0.562 -.0496978 .0913679

This is almost exactly the same as the naive analysis. However, the restricted matching
fares much better (Listing[20):

Listing 20 Analysis of the effect of treatment, using matching with a caliper

regress y t if set2 !=

Source | SS df MS Number of obs = 906
————————————— e F( 1, 904) = 218.31
Model | 240.813657 1 240.813657 Prob > F = 0.0000
Residual | 997.184884 904 1.10308062 R-squared = 0.1945
7777777777777 tomm e e Adj R-squared = 0.1936
Total | 1237.99854 905 1.36795419 Root MSE = 1.0503

y | Coef std. Err t P>|t| [95% Conf. Interval]
,,,,,,,,,,,,, o
t | -1.031113 .0697862 -14.78 0.000 -1.168075 -.8941516

cons | .1340728 .0493463 2.72 0.007 .0372261 .2309194

The estimated treatment effect is very close to the true value here. However, the analysis
we have done is simply compared 453 treated subjects to 453 comparable untreated subjects:
we have in fact ignored the matching. If we wish to use the fact that we have matched data, we
need to use xtreg for the analysis. The matched analysis should not give a different estimate,
but it should give a smaller standard error (Listing 21
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Listing 21 Matched analysis of the effect of treatment, using matching with caliper
. xtreg y t, i(set2) fe

Fixed-effects (within) regression Number of obs = 906

Group variable (i): set2 Number of groups = 453

R-sg: within = 0.3367 Obs per group: min = 2

between = 0.0000 avg = 2.0

overall = 0.1945 max = 2

F(1,452) = 229.49

corr(u_i, Xb) = 0.0000 Prob > F = 0.0000

v o Coef. Std. Err. t P>t [95% Conf. Interval]

_____________ e

t | -1.031113 .068065 -15.15 0.000 -1.164877 -.8973503

cons | .1340728 .0481292 2.79 0.006 .0394879 .2286576

,,,,,,,,,,,,, o
sigma_u | .76053338
sigma_e | 1.0243726

rho | .35534384 (fraction of variance due to u_i)
F test that all u_1i=0: F (452, 452) = 1.10 Prob > F = 0.1501

The effect estimate is exactly the same, as expected, and the standard error is very slightly
smaller, but the difference would not affect our inference from the result.

6. Trimming

We have seen that failing to exclude subjects outside the common support can lead to biased
estimates. Even within the common support, there may be highly atypical subjects (untreated
with very high propensity scores, or treated with very low propensity scores). This may be
a sign of unmeasured confounding (there is a reason why these subjects were not treated as
we would have expected, but we have not recorded it in our potential confounders), which
can lead to biased estimates. It is therefore sometimes recommended to trim subjects with
particularly large or small propensity scores|[7].

One common way to do this is to calculate the 2" centile of the propensity score in the
treated and the 100 — z** centile in the untreated, and remove all subjects outside these limits.
This can lead to far more than 2% of subjects being removed, since there are likely to be more
untreated than treated at the lower end of the propensity range and more treated than untreated
at the higher end. In this scheme, limiting the analysis to the common support is equivalent to

trimming at the 0" centile.
There is a program proptrim which will create variables identifying subjects to be in-
cluded in the analysis after trimming at various centiles. The basic command

proptrim t prop2

will create the variables keep_0, keep_1 and keep_5, which take the value 1 for subjects
to be included in the analysis and O for those to be excluded when trimming at the 0**, 1% and
5 centile respectively, although other centiles can be requested.
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The effect of trimming at the 5" centile on the IPT weighted estimate is showing in Listing
22

Listing 22 Analysis of the effect of treatment, using weighting, trimmed at the fifth centile

. xi: regress y t [pw=ipt_wt] if keep_5
(sum of wgt is 1.0301e+03)

Linear regression Number of obs = 1027
F( 1, 1025) = 191.70
Prob > F = 0.0000
R-squared = 0.1789
Root MSE = 1.0495

| Robust
v o Coef. Std. Err. t P>t [95% Conf. Interval]
_____________ e
t | -.980099%4 .0707877 -13.85 0.000 -1.119005 -.841194
cons | .0559337 .0461471 1.21 0.226 -.0346199 .1464873

Two things to note:

1. The estimate of the treatment effect is now very much closer to the true value than in
the untrimmed analysis.

2. The standard error has not changed appreciably, despite using only about half as many
subjects as the untrimmed analysis. This is because the variance of the weights has been
reduced (subjects with particularly high weights have been excluded).

So the gain in precision has not been at the expense of a loss of efficiency.
If we do a stratified analysis on the 5% trimmed data, we get a very similar result (Listing

23):
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Listing 23 Analysis of the effect of treatment, using weighting, trimmed at the fifth centile
. xi: regress y t i.p_d if keep_5

i.p_d _Ip_d_1-10 (naturally coded; _Ip_d_1 omitted)
Source | SS df MS Number of obs = 1027
————————————— Fom F( 6, 1020) = 34.63
Model | 222.136794 6 37.0227991 Prob > F = 0.0000
Residual | 1090.41913 1020 1.06903837 R-squared = 0.1692
————————————— Fomm Adj R-squared = 0.1644
Total | 1312.55593 1026 1.27929428 Root MSE = 1.0339
y | Coef. Std. Err. t P>t [95% Conf. Intervall]
,,,,,,,,,,,,, o
t | -.9816952 .0685561 -14.32 0.000 -1.116222 -.8471681

_Ip_d_ 2 | (dropped)

_Ip_d 3 | -.5581856 .1448573 -3.85 0.000 -.842438 -.2739332
Ip.d 4 | -.4285173 .1358399 -3.15 0.002 -.6950748 -.1619598
Ip_d 5 | -.4112855 .1348454 -3.05 0.002 -.6758915 -.1466795
Ip.d 6 | -.1919948 .1341721 -1.43 0.153 -.4552796 .0712901
Ip.d_7 | -.1125884 .1333471 -0.84 0.399 —.3742543 .1490775

_Ip_d_8 | (dropped)

_Ip_d 9 | (dropped)

_Ip_d_10 | (dropped)
_cons | .3507634 .1206996 2.91 0.004 .1139154 .5876113

The thing to note this time is that we have lost all of the lowest decile, along with the 3
highest deciles. Nonetheless, the estimate is similar to that we saw without trimming, although
in this case there has been an increase in the standard error.

7. Alternative Analyses

So far, we have only seen how propensity scores can be used with the regress command. In
fact, they can be used with many other commands as well, but not all commands can be used
with all methods.

The good news is that the simplest method, stratification, works with any command. The
thing to remember with this method is the more strata the better, provided you have at least
one case and one control in every stratum.

Weighting can in principle be used with any regression command, but in practice not every
command in stata will accept pweights, the name stata gives to the type of weight we need
to use. You can find out if the command accepts pweights by typing help cmd, where cmd
is the name of the command you want to use.

Matching needs to be used carefully. Matched data should normally be analysed using a
method that takes into account the matching. As we have seen, with linear regression it makes
no difference to the estimate, but it may reduce the standard error. However, with other forms
of regression, an unmatched analysis might give an incorrect answer.
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8. Conclusions

Stratification can work well provide there are enough strata. This requires large sample sizes:
our sample of 2,000 could only just support deciles. Using a small number of strata will lead
to residual confounding. Stratification is also the easiest method to use, so is recommended
whenever the sample size is adequate.

With weighting, you have to be careful about which subjects you include. Trimming to the
common support is essential, but trimming more may give added benefit.

The thing to watch for with matching is the caliper that you select for the matches. This
needs to be sufficiently small that the estimate in the matched data is unbiased, but sufficiently
large that enough subjects are included in the analysis to give and efficient estimate.
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A. Complete do file for tutorial

set more off

// Getting data
global datadir http://personalpages.manchester.ac.uk/staff/mark.lunt
use "S$datadir/pg_example.dta"

// Checking confounders
tabstat x*x, by (t) statistics(mean sd) columns (statistics)
pbalchk t x1 x2 x3

// Intial propensity score
logistic t x1 x2 x3
predict propensity

graph tw kdensity propensity if t == 0 || ///
kdensity propensity if t == 1

predict lp, xb

graph tw kdensity 1lp if == 0 || kdensity 1lp if t ==

estat gof, group(l0) table

foreach var of varlist x1 x2 x3 {
foreach var2 of varlist x1 x2 x3 {
capture drop temp
gen temp = ‘var’ x ‘var2’
logit t x1 x2 x3 temp
di "Testing ‘var’ x ‘var2’"
estat gof, table group(10)

// Improved propensity score
gen x32 = x3 * x3

logit t x1 x2 x3 x32

estat gof, table group(10)
predict prop2

predict 1lp2, xb

gr tw lowess t x1 || lowess propensity x1
gr tw lowess t x3 || lowess propensity x3
gr tw lowess t x1 || lowess prop2 x1
gr tw lowess t x3 || lowess prop2 x3

fracpoly logit t x1 x2 x3
estat gof, group(1l0)
fracpoly logit t x3 x2 x1
estat gof, group(l0)

// Creating strata
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xtile pg = 1p2, n(5)
tab pg t, ro

xtile p_d = 1p2, n(l1l0)
tab p_d t, ro

// Creating weights
propwt t prop2, ipt smr

// Creating matched sets

gmatch t 1p2, set(setl) diff(diffl)
histogram diffl if diffl < 0.2
gmatch t 1lp2, set(set2) diff(diff2)
histogram diff2 if set2 <

cal(0.1)

// Rechecking Balance

pbalchk t x1 x2 x3, strata(pqg)
pbalchk t x1 x2 x3, strata(p_d)
pbalchk t x1 x2 x3, wt(ipt_wt)
pbalchk t x1 x2 x3, wt(smr_wt)
pbalchk t x1 x2 x3 if setl <
pbalchk t x1 x2 x3 if set2 !=

// Estimating treatment effect
regress y t

x1i:

regress
xi: regress
regress y t
regress y t
bys t:

regress
regress

summ
y t
y t

regress y t
regress y t

xtreg y t, i

// Trimming

y t i.pg
y t i.p_d

[pw=ipt_wt]
[pw=smr_wt]
prop2
[pw=ipt_wt]
[pw=smr_wt]
if setl !=
if set2 !=
(set2) fe

proptrim t prop2

regress y t
xi:

B.

[pw=ipt_wt]

if prop2 <= 0.9868041 & prop2 >= 0.0280815
if prop2 <= 0.9868041 & propz2 >= 0.0280815

if keep_5

regress y t i.p_d if keep_5

Do file used to generate example dataset

set obs 2000

gen x1 = invnorm(uniform())

gen x2 = sqgrt (0.5)*x1 + sgrt(0.5) * invnorm(uniform())
gen x3 = sqgrt (0.5)*x1 + sgrt(0.5) * invnorm(uniform())
gen 1 = x1 + x2 + x372

replace 1 =

1 -1
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gen p = exp(l) / (1 + exp(l))

gen t = uniform() < p

gen y = (x17°2 + x2 + x3) /4 - t + invnorm(uniform())
replace x2 = 2%x2 + 7

replace x3 = (x3 + 4.22 ) = 10

drop p

drop 1

save P:/home/teaching/propensity_guide/pg_example.dta, replace
saveold P:/public_html/pg_example.dta, replace
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