Statistical Modelling in Stata: Categorical Outcomes

Mark Lunt

Centre for Epidemiology Versus Arthritis University of Manchester

Categorical Outcomes

- Nominal
- Ordinal

Nominal Outcomes

- Categorical, more than two outcomes
- No ordering on outcomes

R by C Table: Example

	Females		Males		Total	
Indemnity	234 (51%)		60	(40%)	294	(48%)
Prepaid	196	(42%) 81 (53%		(53%)	277	(45%)
No Insurance	32	(7%)	13	13 (8%)		(7%)
Total	462	(100%)	154	(100%)	616	(100%)

R by C Table: Example

	Females		Males		Total	
Indemnity	234	(51%)	60	(40%)	294	(48%)
Prepaid	196	(42%)	81	(53%)	277	(45%)
No Insurance	32	(7%)	13	13 (8%)		(7%)
Total	462	(100%)	154	154 (100%)		(100%)

 $\chi^2 = 6.33$, 2 degrees of freedom, p = 0.04

R by C Table: Example

	Females		Males		Total	
Indemnity	234 (51%) 60 ((40%)	294	(48%)	
Prepaid	196	(42%)	81	(53%)	277	(45%)
No Insurance	32	(7%)	13	13 (8%)		(7%)
Total	462	(100%)	154 (100%)		616	(100%)

 $\chi^2 = 6.33$, 2 degrees of freedom, p = 0.04

tab insure male, co chi2

Analysing an R by C Table

- χ^2 -test: says if there is an association
- Need to assess what that association is
- Can calculate odds ratios for each row compared to a baseline row

Odds Ratios from Tables

	Females	Males	Total
Indemnity	234	60	294
Prepaid	196	81	277
No Insurance	32	13	45
Total	462	154	616

- Prepaid vs Indemnity
 - OR for males = $\frac{81 \times 234}{60 \times 196}$ = 1.61
- No Insurance vs Indemnity
 - OR for males = $\frac{13 \times 234}{60 \times 32}$ = 1.58

Odds Ratios from Tables

	Females	Males	Total
Indemnity	234	60	294
Prepaid	196	81	277
No Insurance	32	13	45
Total	462	154	616

- Prepaid vs Indemnity
 - OR for males = $\frac{81 \times 234}{60 \times 196}$ = 1.61
- No Insurance vs Indemnity
 - OR for males = $\frac{13 \times 234}{60 \times 32}$ = 1.58

Odds Ratios from Tables

	Females	Males	Total
Indemnity	234	60	294
Prepaid	196	81	277
No Insurance	32	13	45
Total	462	154	616

- Prepaid vs Indemnity
 - OR for males = $\frac{81 \times 234}{60 \times 196}$ = 1.61
- No Insurance vs Indemnity
 - OR for males = $\frac{13 \times 234}{60 \times 32}$ = 1.58

Multiple Logistic Regression Models

- Previous results can be duplicated with 2 logistic regression models
 - Prepaid vs Indemnity
 - No Insurance vs Indemnity
- Logistic regression model can be extended to more predictors
- Logistic regression model can include continuous variables

Multiple Logistic Regression Models: Example

. logistic insure1 male

insure1 Odds	Ratio Std. Ern	z. z	P> z	[95% Conf.	Interval]
male 1.6	.3157844	2.44	0.015	1.09779	2.36629
. logistic insure2 m	nale				

insure2 | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]

male | 1.584375 .5693029 1.28 0.200 .7834322 3.204163

Multinomial Regression

- It would be convenient to have a single analysis give all the information
- Can be done with multinomial logistic regression
- Also provides more efficient estimates (narrower confidence intervals) in most cases.

Number of obs = 616

Multinomial Regression Example

```
. mlogit insure male, rrr
```

Uninsure

Multinomial logistic regression

Log likelihood =	EE2 40710			LR chi2 Prob > Pseudo	chi2	= =	6.38 0.0413 0.0057
Log likelihood -				rseudo			0.0037
insure + Prepaid	RRR	Std. Err.	Z	P> z	[95%	Conf.	Interval]
male	1.611735	.3157844	2.44	0.015	1.09	779	2.36629

male | 1.584375 .5693021 1.28 0.200 .7834329 3.20416

(Outcome insure==Indemnity is the comparison group)

Multinomial Regression in Stata

- Command mlogit
- Option rrr (Relative risk ratio) gives odds ratios, rather than coefficients
- Option baseoutcome sets the baseline or reference category

Using predict after mlogit

- Can predict probability of each outcome
 - Need to give k variables
 - predict p1-p3, p
- Can predict probability of one particular outcome
 - Need to specfy which with outcome option
 - predict p2, p outcome(2)

Using predict after mlogit: Example

. by male: summ p1-p3

-> male = 0

Max	Min	td. Dev.	Sto	Mean	Obs		Variable
.5064935	.5064935	0		.5064935	477	i	p1
.4242424	.4242424	0		.4242424	477	1	p2
.0692641	.0692641	0		.0692641	477		р3

 \rightarrow male = 1

Variable	Obs	Mean	Std. Dev.	Min	Max
p1 p2	167 167	.3896104 .525974	0	.3896104 .525974	.3896104
р3	167	.0844156	0	.0844156	.0844156

Using lincom after mlogit

- Can use lincom to
 - test if coefficients are different
 - calculate odds of being in a given outcome category
- Need to specify which outcome category we are interested in
- Normally, use the option eform to get odds ratios, rather than coefficients

Using lincom after mlogit

```
. lincom [Prepaid] male - [Uninsure] male
```

```
( 1) [Prepaid] male - [Uninsure] male = 0
```

insure	Coef.	Std. Err.	Z	P> z	[95% Conf.	<pre>Interval]</pre>
(1)	.017121	.3544299	0.05	0.961	6775487	.7117908

Trend Test
Linear regression: ordinal predictors
Cross-tabulation: ordinal outcomes
Ordinal Regression: ordinal outcomes

Ordinal Outcomes

- Can ignore ordering, use multinomial model
- Can use a test for trend
- Can use an ordered logistic regression model

Test for Trend

- χ^2 -test tests for any differences between columns (or rows)
- Not very powerful against a linear change in proportions
- Can divide the χ^2 -statistic into two parts: linear trend and variations around the linear trend.
- Test for trend more powerful against a trend
- Has no power to detect other differences
- Often used for ordinal predictors

Linear regression: ordinal predictors Dross-tabulation: ordinal outcomes Ordinal Regression: ordinal outcomes

Test for Trend: Example

	Trea	Treatment A		Treatment B		Total
Healed	12	(38%)	5	(16%)	17	(27%)
Improved	10	(31%)	8	(25%)	18	(28%)
No Change	4	(13%)	8	(25%)	12	(19%)
Worse	6	(19%)	11	(34%)	17	(27%)
Total	32	(100%)	32	(100%)	34	(100%)

Linear regression: ordinal predictors Cross-tabulation: ordinal outcomes Ordinal Regression: ordinal outcomes

Test for Trend: Results

. ptrendi 12 5 1 \ 10 8 2 \ 4 8 3 \ 6 11 4

+-				+
	r	nr	_prop	x
1.				
1	12	5	0.706	1.00
	10	8	0.556	2.00
	4	8	0.333	3.00
	6	11	0.353	4.00
+-				+

Trend analysis for proportions

```
Regression of p = r/(r+nr) on x:

Slope = -.12521, std. error = .0546, Z = 2.293

Overall chi2(3) = 5.909, pr>chi2 = 0.1161

Chi2(1) for trend = 5.259, pr>chi2 = 0.0218

Chi2(2) for departure = 0.650, pr>chi2 = 0.7226
```


Linear regression: ordinal predictors Dross-tabulation: ordinal outcomes Ordinal Regression: ordinal outcomes

Test for Trend: Caveat

- Test for trend only tests for a linear association between predictors and outcome.
- U-shaped or inverted U-shaped associations will not be detected.
- Trend test depends on values assigned to levels of ordinal variable

Test for Trend in Stata

- Test for trend often used, should know about it
- Not implemented in base stata:
 - see http://www.stata.com/support/faqs/stat/trend.html
- Very rarely the best thing to do:
 - If trend variable is the outcome, use ordinal logistic regression
 - If trend variable is a predictor:
 - fit both categorical & continuous, testparm categoricals
 - if non-significant, use continuous variable
 - if significant, use categorical variables
 - Trend test, but uses appropriate regression model

Fitting an ordinal predictor

Trend Test
Linear regression: ordinal predictors
Cross-tabulation: ordinal outcomes

. regress write oread i.oread note: 6.oread omitted because of collinearity

	SS					Number of obs F(5, 194)		
Model Residual	6612.82672 11266.0483	5 194	1322 58.0	2.56534 0724138		Prob > F R-squared		0.0000
	17878.875					Adj R-squared Root MSE		
						[95% Conf.		
						.1203466		
oread								
2	-6.669841	6.339	542	-1.05	0.294	-19.17311	5	.833432
3	-3.666385	4.761	676	-0.77	0.442	-13.05768	5	.724914
4	.3641026	3.568	089	0.10	0.919	-6.673124	7	.401329
5	.4233918	2.825	015	0.15	0.881	-5.148294	5	.995078
6	0	(omitt	ed)					
_cons	42.71111	9.158	732	4.66	0.000	24.64764	6	0.77458

- . testparm i.oread
- (1) 2.oread = 0
- (2) 3.oread = 0
- (3) 4.oread = 0
- (4) 5.oread = 0

$$F(4, 194) = 1.36$$

 $Prob > F = 0.2497$

- Don't confuse trend with dose response
 - All three models may have significant trend test
 - Only first model has a dose-response effect
 - Other models better fitted using categorical variables

Genetic Model	Genotype		
	aa	aA	AA
Additive(dose-response)	0	0.1	0.2
Dominant	0	0.2	0.2
Recessive	0	0	0.2

Genetic Model	Genotype			
	aa	aA	AA	
Additive(dose-response)	0	0.1	0.2	
Dominant	0	0.2	0.2	
Recessive	0	0	0.2	

Genetic Model	Genotype			
	aa	aA	AA	
Additive(dose-response)	0	0.1	0.2	
Dominant	0	0.2	0.2	
Recessive	0	0	0.2	

Genetic Model	Genotype			
	aa	aA	AA	
Additive(dose-response)	0	0.1	0.2	
Dominant	0	0.2	0.2	
Recessive	0	0	0.2	

Trend Test Linear regression: ordinal predictors Cross-tabulation: ordinal outcomes Ordinal Regression: ordinal outcomes

Ordinal Regression: Example

	Treatment A		Trea	atment B	Total		
Healed	12	(38%)	5	(16%)	17	(27%)	
Improved	10	(31%)	8	(25%)	18	(28%)	
No Change	4	(13%)	8	(25%)	12	(19%)	
Worse	6	(19%)	11	(34%)	17	(27%)	
Total	32	(100%)	32	(100%)	34	(100%)	

Trend Test Linear regression: ordinal predictors Cross-tabulation: ordinal outcomes Ordinal Regression: ordinal outcome

Ordinal Regression: Using Tables

- Dichotomise outcome to "Better" or "Worse"
- Can split the table in three places
- This produces 3 odds ratios
- Suppose these three odds ratios are estimates of the same quantity
- Odds of being in a worse group rather than a better one

	Treatment A		Trea	atment B	Total		
Healed	12	(38%)	5	(16%)	17	(27%)	
Improved	10	(31%)	8	(25%)	18	(28%)	
No Change	4	(13%)	8	(25%)	12	(19%)	
Worse	6	(19%)	11	(34%)	17	(27%)	
Total	32	(100%)	32	(100%)	34	(100%)	

$$OR_1 = \frac{(12) \times (8+8+11)}{5 \times (10+4+6)} = 3.2$$
 (1)

$$OR_2 = \frac{(12+10)\times(8+11)}{(5+8)\times(4+6)} = 3.2$$
 (2)
 $OR_3 = \frac{(12+10+4)\times11}{(5+8+8)\times6} = 2.3$ (3)

$$OR_3 = \frac{(12+10+4)\times11}{(5+8+8)\times6} = 2.3$$
 (3)

	Treatment A		Trea	atment B	Total		
Healed	12	(38%)	5	(16%)	17	(27%)	
Improved	10	(31%)	8	(25%)	18	(28%)	
No Change	4	(13%)	8	(25%)	12	(19%)	
Worse	6	(19%)	11	(34%)	17	(27%)	
Total	32	(100%)	32	(100%)	34	(100%)	

$$OR_1 = \frac{(12) \times (8+8+11)}{5 \times (10+4+6)} = 3.2$$

$$OR_2 = \frac{(12+10)\times(8+11)}{(5+8)\times(4+6)} = 3.2$$
 (2)

$$OR_3 = \frac{(12+10+4)\times11}{(5+8+8)\times6} = 2.3$$

(1)

	Treatment A		Trea	atment B	Total		
Healed	12	(38%)	5	(16%)	17	(27%)	
Improved	10	(31%)	8	(25%)	18	(28%)	
No Change	4	(13%)	8	(25%)	12	(19%)	
Worse	6	(19%)	11	(34%)	17	(27%)	
Total	32	(100%)	32	(100%)	34	(100%)	

$$OR_1 = \frac{(12) \times (8+8+11)}{5 \times (10+4+6)} = 3.2$$

$$OR_2 = \frac{(12+10)\times(8+11)}{(5+8)\times(4+6)} = 3.2$$
 (2)

$$OR_3 = \frac{(12+10+4)\times11}{(5+8+8)\times6} = 2.3$$

(1)

	Treatment A		Trea	atment B	Total		
Healed	12	(38%)	5	(16%)	17	(27%)	
Improved	10	(31%)	8	(25%)	18	(28%)	
No Change	4	(13%)	8	(25%)	12	(19%)	
Worse	6	(19%)	11	(34%)	17	(27%)	
Total	32	(100%)	32	(100%)	34	(100%)	

$$OR_1 = \frac{(12) \times (8+8+11)}{5 \times (10+4+6)} = 3.2$$

$$OR_2 = \frac{(12+10)\times(8+11)}{(5+8)\times(4+6)} = 3.2$$
 (2)

$$OR_3 = \frac{(12+10+4)\times11}{(5+8+8)\times6} = 2.3$$

(1)

Ordered Polytomous Logistic Regression

$$\log(\frac{p_i}{1-p_i}) = \alpha_i + \beta x$$

Where

- p_i = probability of being in a category up to and including the ith
- α_i = Log-odds of being in a category up to and including the i^{th} if x = 0
- β = Log of the odds ratio for being in a category up to and including the ith if x = 1, relative to x = 0
- α and p take different values for different values of i, β does not

Ordinal regression in Stata

- ologit fits ordinal regression models
- Option or gives odds ratios rather than coefficients
- Can compare likelihood to mlogit model to see if common odds ratio assumption is valid
- predict works as after mlogit

Trend Test
Linear regression: ordinal predictors
Cross-tabulation: ordinal outcomes
Ordinal Regression: ordinal outcomes

Ordinal Regression in Stata: Example

Ordinal Regression Caveats

- Assumption that same β fits all outcome categories should be tested
 - AIC, BIC or LR test compared to mlogit model
- User-written gologit2 can also be used
 - Allows for some variables to satisfy proportional odds, others not
 - Option autofit() selects variables that violate proportional odds
- There are a variety of other, less widely used, ordinal regression models: see Sander Greenland: Alternative Models for Ordinal Logistic Regression, Statistics in Medicine, 1994, pp1665-1677.

