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1 Introduction to Linear Models

1.1 What is a Linear Model ?

The aim of a statistical model is to predict an outcome variable based on one or more predictor
variables. Outcome and predictor variables have many names: some are given table 1.1. A linear
model is a particularly simple statistical model that assumes that the relationship between the
outcome and the predictor(s) is a linear one, i.e. it can be described using straight lines.

Outcome Predictor

Y-variable x-variables
Dependent variable Independent variables
Response variable Regressors
Output variable Input variables

Explanatory variables
Carriers
Covariates

Table 1.1: Names given to predictor and outcome variables

1.1.1 Linear Model Equation

Suppose that we have an outcome variable Y and p predictor variables from which we wish to
predict Y , and that we have measured Y and x1, x2, . . .xp on n subjects. In this case, the
equation of the linear model is

Y = β0 + β1x1 + β2x2 + . . .+ βpxp + ε (1.1)

The part of the equation β0 + β1x1 + β2x2 + . . . + βpxp is called the Linear Predictor. Its
value is called the predicted value of Y and often written as Ŷ (pronounced “Y hat”). This part
of the model represents the variation in Y that can be predicted, and may be referred to as the
systematic component of the model. The term ε is called the error term (also referred to as
the noise or random component of the model). This represents the variation in Y that cannot
be predicted. We assume that ε has a normal distribution, with mean 0 and variance σ2ε . The
variance of Y is equal to the sum of the variance of Ŷ plus σ2ε : in other words the total variability
in Y is equal to the predictable variability plus the unpredictable variability. Clearly, we would
like the predictable variability to be as great as possible and the unpredictable variability to be
as little as possible.

1.1.2 Linear Model Assumptions

Implicit in the above equation are a number of assumptions about the data. They are

Variables Y1, Y2 . . . Yn are independent. Equation 1.1 assumes that only the x-variables are
important for predicting Y . If Y depends also on other Y values, (for example in a
time-series, when the value of Y may depend on the previous value of Y as well as the
x-variables), the importance of the x variables can be over-estimated.

The variance of Yi is constant. We assume that the error term has the same distribution irre-
spective of the values of x or Y .
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1.1 What is a Linear Model ?

Mean of Y is a linear function of x A linear model fits the best straight line to the data, as
shown in Figure 1.1(a). If the true association between x and Y is not a straight line, the
model will provide poor predictions. This can be seen in Figure 1.1(b), which illustrates a
nonlinear association between x and Y , together with the fitted linear model. Due to the
non-linearity, the predicted values are less than the observed values for extreme x-values
and greater than the observed values for more central x values.

Distribution of Yi is normal. This is particularly important in small samples, where outlying
observations can have a large effect on the regression line.
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(b) Non-linear Model

Figure 1.1: Comparison of Linear and Non-Linear models

Before doing any regression analysis, it is worth plotting Y against each of the x-variables
to see if the above assumptions are reasonable. There are better ways to test the assumptions
that we will consider later, but this first step will tell you if fitting a linear model is completely
unreasonable.

1.1.3 Linear Model Parameters

The terms βj in the linear predictor are called the parameters or coefficients of the regression
modela. The meaning of the parameters is illustrated in figure 1.2. β0 is the expected value
of Y when all of the x-variables are 0 (the intercept). If xj increases by 1, and all the other
x-variables remain unchanged, then the expected value of Y increases by βj . βj may be referred
to as the slope or gradient of Y on xj .

Parameter Estimation

The β and σ parameters describe the relationship between Y and the x-variables in a population.
However, we do not know these parameters, we can only estimate them based on a sample from
the population. As is customary, we will use greek letters for population parameters and the
equivalent roman letter for our estimate of the parameter: bj is our estimate of the population
parameter βj and s is our estimate of the population parameter σ.

In general, the values given to b0, b1, etc. are those which minimise the sum of the squares
of the residuals. These estimates are called the “Least Squares” estimates for this reason.

aAvoid using the expression “beta-coefficient”. Although commonly used to refer to regression coefficients,
technically a beta coefficient is derived from data in which the standard deviation of all variables is 1
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1 Introduction to Linear Models
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Figure 1.2: Interpretation of Linear Model Parameters

Inference on Parameters

If the assumptions of the linear model are correct, then the parameter estimates bj will be
normally distributed with mean βj , and standard deviation

SD(bj) =

√
σ2

ns2x

where σ2 is the variance of the error terms ε, s2x is the variance of xj and n is the number of
observations (for sufficiently large n). Note that the standard deviation decreases as n increases
(more observations give more precise estimates) and as s2x increases (a wide range of x values
gives a more precise estimate than a a narrow range).Since we know the distribution of bj , we
can perform hypothesis tests and construct confidence intervals for βj .

Unfortunately, we do not know σ, we only have an estimate of it, sε, from the data. The
slope estimates bj will therefore follow a t-distribution with n− p− 1 degrees of freedom, with
mean βj and standard deviation

sbj =

√
s2ε
ns2x

This means that we can test hypotheses about βj using t-statistics. To test the hypothesis
that βj = B, we form

t =
(bj −B)

sbj
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1.1 What is a Linear Model ?

This can be compared to a t-distribution on n−p−1 degrees of freedom, to provide a p-value for
the hypothesis. Most commonly, we wish to test the hypothesis that βj = 0, since that would
mean that Y is not associated with xj .

We can also create a (1− α) confidence interval for βj as

bj ± tα/2,n−p−1 × sbj

Again, if 0 lies within this confidence interval, we would conclude that xj and Y are not associ-
ated.

Note that if n is sufficiently large, the t-distribution is well approximated by a normal
distribution. In this case, a 95% confidence interval can be found by

bj ± 1.96× sbj

However, for small n, the differences between the normal and t-distributions can be considerable,
and the above confidence interval will be too narrow. It is therefore better to let stata calculate
the confidence intervals for you whenever possible.

The Intercept, β0 In general, inferences about the intercept, β0 are of less interest. This
is because it is the value taken when all of the x-variables are 0, and usually there is at least
one x-variable for which a value of 0 is not sensible (for example height or weight). However, if
required, confidence intervals and hypothesis tests can be produced in exactly the same manner
as for the slope parameters βj .

The Outcome Variable, Y The main purpose of a linear model is to be able to predict
a Y -variable from one or more x-variables. Our “best estimate” of Y is given by the linear
predictor, but we are also interested in how much individual values of Y will vary around that
estimate. There are two sources of variation in Y :

1. The random component of the linear model.

2. Uncertainty about the parameters βj of the linear model

Clearly, if there is considerable random variation in Y , it will not be possible to predict it
with great accuracy. However, it is also clear that the more precisely we have estimated the
relationship between x and Y , the more precisely we will be able to predict Y .

Thus the prediction intervalb for Y has the form

Ŷ ± tα/2,n−p−1 ×
√
s2
Ŷ

+ s2ε

The first term under the square root sign represents the uncertainty in the value of Ŷ , due to the
uncertainty about the parameter estimates, the second term represents the random component
of the linear model. The second term is assumed to be constant for all values of x, but the first
term depends on x: we can estimate Y better in the centre of our data than in more outlying
regions. This first term also depends on n: the larger the sample we use, the more precisely we
can estimate the parameters of the linear model.

bThis is not a confidence interval, because only parameters have confidence intervals, and Y is a random variable,
not a parameter. In fact, it is a reference range for Y , conditional upon x.
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1 Introduction to Linear Models

The Fitted Value, Ŷ We may be interested in the mean value of Y at a given value of x in
a population, rather than individual values. In this case, we need not worry about the random
component of the linear model, since the mean value of the error terms is 0 by definition.
Therefore, a confidence interval for Ŷ is given by

Ŷ ± tα/2,n−p−1 ×
√
s2
Ŷ

1.1.4 Analysis of Variance

We saw above that the total variation in Y is made up of the predictable variation and unpre-
dictable variation. This can be formalised mathematically as∑(

Y − Ȳ
)2

=
∑(

Ŷ − Ȳ
)2

+
∑(

Y − Ŷ
)2

(1.2)

In equation 1.2, the first term is called the total sum of squares, since it represents all of the
variation in Y about its mean value (Ȳ ). The second term is called the regression sum of squares,
since it represents the variation of the predicted values (Ŷ ) about the mean, i.e. that part of
the variation that is predictable. The third term is called the residual sum of squares, and
represents the variation of the observed Y values about their predicted values. This represents
the unpredictable or random variation in Y .

Each sum of squares has an associated degrees of freedom (d.f.). The d.f. for the total sum

of squares is n − 1, since the variance of Y is
∑(

Y − Ȳ
)2
/(n − 1). The d.f. for the regression

sum of squares is the number of parameters in the regression model. The residual degrees of
freedom is found by subtracting the regression d.f. from the total d.f. This enables us to draw
up the following table, called an Analysis of Variance or ANOVA table:

Source df Sum of Mean Square F
Squares

Regression p SSreg MSreg =
SSreg
p

MSreg
MSres

Residual n-p-1 SSres MSres =
SSres

(n− p− 1)

Total n-1 SStot MStot =
SStot

(n− 1)

Table 1.2: ANOVA Table

The ratio MSreg/MSres is a measure of how much more of the variation in Y is explained
by the x-variables than would be expected by chance. If there is no association between Y and
the x-variables, this we would expect this ratio to be equal to 1. If the ratio is greater than 1,
this suggests that there is an association between Y and the x-variables. MSreg/MSres can be
compared to an F distribution to test the hypothesis that there is no association.

If the linear regression model contains only a single variable, then the p-value resulting from
the hypothesis test that β = 0 will be exactly the same as that resulting from the hypothesis
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1.1 What is a Linear Model ?

test that F = 1. If there are several predictors, the F -test provides a test of the overall model,
whilst the t-tests provide tests of each individual predictor variable.

1.1.5 Goodness of Fit

The fact that there is an association between x and Y does not necessarily imply that x is useful
for predicting Y . The statistical significance of an effect depends both on the size of the effect
and the size of the sample in which it is being measured. A small effect may be highly significant
in a very large sample, but still provide little predictive power.

The predictive power of the linear model depends on how much of total variation in Y can
be predicted. We have seen that the predictable variation is SSreg and the total variation is
SStot, so the proportion of the variation that we can predict is

R2 =
SSreg
SStot

This quantity is called R2 because it is the square of the coefficient of correlation between Y
and Ŷ : since it is a proportion it can take any value from 0 to 1.

This gives an overall measure of how good a model is, but it is difficult to use to compare
models. This is because adding an extra variable to a model will always increase R2, whether
or not the variable is related to Y . A better statistic for comparing models is the adjusted R2,
which allows for the fact that even unrelated variables will explain some of the variance of Y .
The larger the sample size, the smaller the difference between R2 and adjusted R2.

1.1.6 Linear Models in Stata

The regress Command

Linear models are fitted in stata using the regress command. The syntax for this command is
simply

regress yvar xvars

The regression can be performed in different groups using by or if clauses, and there are various
other complex options which you need not worry about yet.

Fitted values from a regression model can be obtained by using the predict command.
Typing

predict varname, xb

will create a new variable called varname , containing the fitted valuesc.
The predict command can also generate other variables which may be of interest. For

example, the standard error of the forecast,
√
s2
Ŷ

+ s2ε, can be calculated by

predict varname, stdf

The standard error of Ŷ , called the standard error of the prediction in stata can be calculated
by

predict varname, stdp

These enable us to construct confidence intervals and prediction intervals.

cThe odd name “xb” is derived from matrix algebra, since b1x1 + b2x2 + . . .+ bpxp can be written as xb, where
x is the 1 × k matrix x1, x2, . . . , xp and b is the k × 1 matrix b1, b2, . . . , bp.
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1 Introduction to Linear Models

Understanding Stata Output

In this section, we are going to use stata to fit a linear model to the data in table 1.3.

x Y

4 4.26
5 5.68
6 7.24
7 4.82
8 6.95
9 8.81

10 8.04
11 8.33
12 10.84
13 7.58
14 9.96

Table 1.3: Data for Regression

If this data is entered into stata, and we type

scatter Y x

we get the scatterplot shown in figure 1.3. This scatterplot suggests that Y increases as x
increases, and fitting a straight line to the data would be a reasonable thing to do. So we can
do that by typing

regress Y x

The output from the regress command comes in two parts: first an ANOVA table and some
overall tests of the model, then a table of statistics for the individual coefficients. Here is the
first part of the output for the above regression.

Source | SS df MS Number of obs = 11

---------+------------------------------ F( 1, 9) = 17.99

Model | 27.5100011 1 27.5100011 Prob > F = 0.0022

Residual | 13.7626904 9 1.52918783 R-squared = 0.6665

---------+------------------------------ Adj R-squared = 0.6295

Total | 41.2726916 10 4.12726916 Root MSE = 1.2366

Most of the ANOVA table is on the left, with other statistics on the right. The F value is
17.99, which is considerably greater than 1. The p-value, labelled Prob > F, is 0.0022: in other
words, if there were no true association between x and Y , only 2 times out of 1000 would random
sampling produce such a strong observed association. We can therefore reject the hypothesis of
no association. R2 is 0.6665, so nearly 67% of the variation in Y can be predicted from x, and
only 33% is random. Finally, the term Root MSE is the square root of the residual mean square
MSres, which is an estimator for σ.

Here is the second part of the output which deals with the individual coefficients:
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1.1 What is a Linear Model ?
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Figure 1.3: Scatterplot of sample linear model data

------------------------------------------------------------------------------

Y | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--------------------------------------------------------------------

x | .5000909 .1179055 4.241 0.002 .2333701 .7668117

_cons | 3.000091 1.124747 2.667 0.026 .4557369 5.544445

------------------------------------------------------------------------------

The intercept parameter, β0, is labelled cons (for “constant”) by stata. Thus our prediction
equation is

Ŷ = 3.00 + 0.500× x

The table also gives standard errors for the parameters β1 and β0, and the corresponding t-
statistics to test the hypothesis β = 0. The p-values are given in the 5th column, showing that in
this case both parameters are significantly different from 0d. Finally, a 95% confidence interval
for each parameter is given.

We may now wish to look at the confidence intervals for the fitted values and the prediction
intervals. To see the data along with a 95% prediction interval, we could now use the commande

twoway lfitci Y1 x1, stdf|| scatter Y1 x1, ylab(0(5)15) xlab(0(5)20)

Figure 1.4(a) shows the data along with a 95% prediction interval. We would expect 95% of

dThe more observant among you may have noticed that the p-value from the t-test for x is the same as that
from the F -test above. This is not a coincidence

e(The graphics commands will be covered in session 11: for now just take my word for it that this does what it
should).
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1 Introduction to Linear Models

the observations to lie within this interval: in this case, all 11 observations do. Figure 1.4(b), on
the other hand shows the regression line, together with its 95% confidence interval. This figure
was obtained by typing

twoway lfitci Y1 x1|| scatter Y1 x1, ylab(0(5)15) xlab(0(5)20)

Notice that the confidence interval is much narrower than the prediction interval, since it
does not need to incorporate the random element in Y . The confidence interval around the fitted
value is analogous to the confidence interval around the mean of sample, whilst the prediction
interval is analogous to a reference range for values in the population. Also, both the confidence
interval and reference range are narrower near the centre of the range of x-values and wider
further away. In particular, the confidence interval and prediction interval are very wide when
x = 0, since this is well to the left of the data. In fact, the confidence interval when x = 0 is
(0.46, 5.54), since this is the confidence interval of β0.

1.2 Diagnostics

How do we know if the model is adequate ? Part of that question is answered by the R2 statistic:
if R2 is small, the model is not good at predicting Y . However, there is another aspect to this
question: do the data satisfy the assumptions of the linear model outlined in section 1.1.2. If
not, any conclusions drawn may be misleading.

Consider the scatter-plots in Figure 1.5f. In each case, the ANOVA table is the same as that
of section 1.1.6, as are the parameter estimates and standard errors. However, only in figure
(a) is a linear model an appropriate fit to the data. Using a linear model to predict values of
Y from values of x in the other situations may result in very poor estimates. In the following
sections, we will see why a linear model is inappropriate for the other datasets, and how we can
recognise similar situations.

1.2.1 Testing Assumptions

When testing that your data satisfies the linear model assumptions, it is important to proceed
in the following order:

Confirm Constant Variance If the the variance of Y varies as x varies, a linear model cannot
be fitted. There are two possible solutions: either transform Y or use weighted regression,
both of which are beyond the scope of this introduction.

Confirm Linearity of Association If the association between Y and x is not linear, this can be
solved by either transforming one or more x variables or fitting polynomials x2, x3 etc.

Identify Influential Observations If one observation is unusual, it can have an inordinate influ-
ence on the regression line, as shown by Figures 1.5(c) and 1.5(d). Such points need to be
identified and their influence assessed.

Confirm Normality of εi Finally, we should check that the residuals are normally distributed.

fThese data were devised by F. J. Anscombe, and first explored in “Graphs in Statistical Analysis”, The American
Statistician, vol 27, pages 17-21.
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Figure 1.4: Prediction Interval and Confidence Interval in Linear Regression
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Figure 1.5: Different Data Configurations Resulting in the Same Linear Model
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1.2 Diagnostics

1.2.2 Confirm Constant Variance

The first assumption that must be tested is the constant variance of error terms. This is because
if this assumption does not hold, the solution may be to transform Y . If this is necessary, it will
change all of the properties of the error terms, so that if they satisfied the assumptions of the
linear model before the transformation, they are unlikely to satisfy them afterwards.

To test that the variance of the error terms, εi = Yi − β0 + β1x1i + β2x2i + . . . + βpxpi, is
constant, we need to calculate the εi. We cannot calculate them directly, because we do not
know the values of the β parameters, we only have estimates for them. The obvious estimate for
the error term εi is ei = Yi − b0 + b1x1i + b2x2i + . . .+ bpxpi. The ei are referred to as residuals.

However, these residuals are not suitable for testing the assumption of constant variance,
since even if the εi have constant variance the ei do not. This is because Ŷ = b0 + b1x1i +
b2x2i + . . . + bpxpi varies more away from the centre of the data, but Y has constant variance.
Therefore, since

var(Yi) = var(Ŷi) + var(ei)

the variance of the residuals must be less at the extremes of the data.

Since we can calculate the expected variance of ei, we can adjust for it and produce residuals
which do have constant variance provided that the εi have constant variance. These residuals
are called standardised residuals (si)

g. I will spare you the mathematical formula: the way to
calculate them is to type

predict varname, rstandard

after a regress command.

A plot of si against Ŷi should show no pattern. The plot should consist of a rectangular
cloud of points, showing that the mean standardised residual is 0 for all values of x, and that
the variance of the standardised residuals are the same for all values of x. A typical result of
such a plot, is shown in Figure 1.6(a)

There are two patterns that are commonly seen in plots of si against Ŷi which suggest that
a linear model is inappropriate. Firstly, the spread of the data may increase (or more rarely
decrease) as Ŷi increases. This is called heteroskedasticity. It may be possible to remove this by
transforming Y . Alternatively, a weighted regression can be used, but this is beyond the scope
of this work. This is illustrated in Figure 1.6(b).

Alternatively, the plot may show curvature. This is an indication that the association be-
tween Y and at least one of the x-variables is not linear. However, it does not indicate which
x-variable is the problem: a different kind of plot (a partial residual plot, described in section
1.2.3) is required for that. Curvature in the residual vs fitted value plot is shown in Figure
1.6(c).

Stata can produce standardised residuals for you, using the command

predict varname, rstandard

These can then be plotted against the fitted values produced by

predict varname, xb

There is a builtin command rvfplot, which plots residuals against fitted values, but since
it does not use studentised residuals it may be misleading in small datasets. In this case, it

gSome statisticians call these residuals studentised residuals, but others, including those who wrote stata, use
the term studentised residuals for something completely different, which we will come to soon

15



1 Introduction to Linear Models

Y

x.000087 .99163

−2.72601

2.03121

(a) Normal Distribution

Y

x.000087 .99163

−1.81561

2.28352

(b) Heteroskedasticity

Y

x.000087 .99163

1.35659

10.5454

(c) Non-Linearity

Figure 1.6: Plots of Residuals vs Fitted Values
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1.2 Diagnostics

is better to to use predict to calculate studentised residuals and create the plot yourself. For
large datasets, the difference between the residual and the standardised residual is small, and
rvfplot can safely be used.

If you are unsure whether the plot reveals non-constant variance, there is a command hettest

to formally test this. Simply typing hettest tests whether the variance is a function of Ŷ , whilst
hettest varname tests if the variance is a function of the predictor variable varname . It is also
possible to formally test whether there is curvature in the plot, using the command ovtest.
However, if there are several x-variables, it is better to consider partial residual plots, outlined
in section 1.2.3

Interpreting the results of the formal tests requires care. If the dataset is very large, it is
possible for a very small, unimportant effect to be statistically significant. On the other hand,
in a small data set a large effect, which does invalidate the model, may not be statistically
significant. Therefore, the plots should always be considered, as well as the results of the formal
tests.

1.2.3 Confirm Linearity of Association

One way to confirm the linearity of the association would be to plot the residuals against each
of the predictor variables in turn. However, if there are several predictor variables, it can be
more useful to generate the partial residuals

pj = e+ bjxj = Y − β0 −
∑
l 6=j

blxl

These partial residuals are formed by subtracting from the observed value of Y that part of
the predicted value that does not depend on xj . Thus, a plot of pj against xj will reveal the
association between Y and xj after adjusting for the other predictors.

It has been suggested that it is easier to interpret a partial residual plot if bjxij , is plotted
along with it. The term bjxij is called the component, since it is the component of Y that can
be predicted from xj . This shows the presumed linear association, to make departures from
linearity easier to spot. Such plots are known as component-plus-residual plots (CPR plots) or
component and component-plus-residual plots , since the partial residual, pj is the sum of the
component of Y that is due to x (bjxj) and the residual e.

These plots can be obtained from stata using the command cprplot varname , after having
run a regression. They are unnecessary if there is only a single predictor variable (a plot of
Y against x provides the same information in this case), but can be very useful if there are a
number of correlated predictor variables.

Figure 1.7 shows a CPR plot for the data in figure 1.5(b). It clearly illustrates the curvature
in the relationship between Y and x.

1.2.4 Identify Influential Observations

We have seen from figures 1.5(c) and 1.5(d) that a single unusual observation can have a marked
effect on the regression equation. Such points are called influential points. Identifying influential
points can be surprisingly difficult, particularly if there are a number of them and several
predictor variables.

The influence a point has on the regression model depends on two factors: how unusual the
values of its x-variables are and how unusual the value of its y-variable is. For example, in Figure
1.5(d), the single point with an x value different from the other points completely determines
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Figure 1.7: Component and component-plus-residual plot for data from Figure 1.5(b)
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1.2 Diagnostics

the regression equation. Points with unusual x values are said to have high leverage, and are
potentially influential points. If, in a addition, the Y value is also unusual, the point will be
influential.

Identifying Influential Observations Graphically

One way to detect influential points is to produce a plot of the leverage against the squared
residual, since the squared residual measures how unusual the Y value is. This can be produced
simply in stata by typing lvr2plot. Points near the top of this diagram have high leverage,
and are therefore potentially influential. Points to the right of this plot have large residuals.
However, influential points, by definition, pull the regression line towards themselves and hence
reduce their residuals. For example, in Figure 1.5(d) the point on the right is highly influential
because of its x value, but has a residual of 0, precisely because it is so influential. It may be
best to re-run the regression excluding any points with high leverage, to see if the conclusions
change. Alternatively, there are some statistics that can be used to assess influence in section
1.2.4.

To detect influential points, studentised residuals are often used. These are similar to stan-
dardised residuals, the regression line from which the residual of a particular point is measured
is fitted excluding that point. This is because an influential point will attract the regression line
towards it, and may therefore have a small standardised residual, but since it is far from the
pattern of the rest of the data will have a large studentised residual.

Identifying Influential Observations Formally

There are a number of statistics that can be calculated to determine how influential a point
is, depending on what the point may have an influence on. For example, if you are concerned
that an observation is having an undue influence on the regression coefficients, you may use the
DFBETA statistic. DFBETAij is a measure of how much βj is changed if observation i is not
included in the regression.

However, in general we are more interested in the predicted values. If there are a number
of correlated predictors, an observation may have considerable influence over several coefficients
without influencing the predicted value greatly (if the changes “cancel out”). In this case, it may
be better to consider DFFITSi, which gives a measure of the change in the predicted value of
observation i if observation i is not used to calculate the regression equation. Another statistic
related to DFFITS is Cook’s distance. This can be thought of as a measure of the change in all
the fitted values if an individual observation is omitted.

There is no theoretical basis for deciding when DFBETAS, DFFITS, or Cook’s distance are
large, since the expected distributions when the data are normally distributed are not known.
However, some commonly used cut-offs are given in table 1.4. These should only be taken as
suggestions, however, since different authors would choose different cut-offs. An alternative idea
is to plot Cook’s distance against the predicted value, and look for outlying observations.

Statistic Cutoff

DFBETAS 2/
√
n, 1.5/

√
n

DFFITS 2
√

(p+ 1)/n
Cook’s Distance 4/n

Table 1.4: Commonly Used Cutoffs for Influence Statistics
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If the dataset does contain one or more influential observations, what should be done. Firstly,
you should check that the unusual observations are not due to an error. If no error can be found,
the sensible thing to do is to present the results of fitting the regression both to all points and
to the non-influential points, to illustrate the effect of the influential points.

It should also be pointed out that although these statistics are good for detecting individual
outliers, if there are several outliers they may not work. It is therefore essential to look at plots
of the data to see if there are outliers.

All of the statistics mentioned above can be calculated directly by stata, using the predict

command after a regression. For details, see the stata manual or type help regress into stata.

Y -outliers

Sometimes, there are points which do not have particularly high leverage, but which are influ-
ential, due to the observed Y value being very different from the expected value. An example
of this is in Figure 1.5(c), where the single outlier pulls the regression line away from the other
points, despite not having particularly high leverage.

In this case, there is an alternative to simply deleting the outlying point: robust regression.
This involves repeated fitting a regression model, with the weighting of each observation being
determined the magnitude of its residual from the previous regression model: the larger the
residual, the smaller the weighting (deleting outliers corresponds to giving them a weight of 0,
and all the other points a weight of 1). It thus provides a better fit to the bulk of the data, but
does not completely ignore outliers.

Figure 1.8 illustrates the use of robust regression on the data in Figure 1.5(c). In this case,
the robust regression line passes through 10 of the 11 points in the dataset, and is unaffected
by the outlier.

Y
3

x1

 Y3  LS Regression
 Robust Regression

5 10 15
5

10

15

Figure 1.8: Comparison of Least Squares and Robust Regression
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1.2.5 Confirm Normality of εi

Again we use the standardised residuals. A plot of the quantiles of the standardised residuals
against the quantiles of a normal distribution should give a straight line: and deviation from
a straight line suggests that the residuals are not normally distributed. Such a plot can easily
be achieved in stata with the command qnorm varname , where varname is the name given to
the standardised residuals. A formal test of the normality of the residuals is provided by swilk

varname .
Figure 1.9 below shows normal plots for the residuals in Figures 1.5(a) and 1.5(c). The

residuals from the linear model are reasonably normally distributed, but the outlier in the
second dataset is clearly visible.

1.2.6 Dangers of Extrapolation

We have seen that our predictions become less reliable as we move away from the centre of our
data. In addition, when we test the assumptions of the linear model, we can only test them
within the range of x-values that we have observed. For example, Y may be a linear function
of x within the range of x-values measured, but not for more extreme values. For these reasons
it is a mistake to predict Y from values of x which lie outside the range of observed x-values.
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Figure 1.9: Normal plots for the residuals from data in Figures 1.5(a) and 1.5(c).
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2 Introduction to Linear Models: Practical

2.1 Linear Models Practical

2.1.1 Datasets

All but one of the datasets that you will use in this practical can be accessed via http from
within stata. However, the directory in which they are residing has a very long name, so you
can save yourself some typing if you create a global macro for this directory. You can do this
by entering

global basedir http://personalpages.manchester.ac.uk/staff/mark.lunt

global datadir $basedir/stats/5 LinearModels1/data

(That could be entered as a single line, but fitting it on the page would have been tricky). If
you wish to run the practical on a computer without internet access, you would need to:

1. Obtain copies of the necessary datasets

2. Place them in a directory on your computer

3. Define the global macro $datadir to point to this directory.

The only dataset not stored in $datadir is the auto dataset, which is distributed with stata.
This can be loaded with the command

sysuse auto, clear

2.1.2 Fitting and Interpreting a Linear Model

The Anscombe Data

Load the data illustrated in figure 1.5 by entering the command

use "$datadir/anscombe.dta"

The scatter-plots in figure 1.5 can then be reproduced by entering

scatter Y1 x1, xlab(0 (5) 20) ylab(0 (5) 15)

scatter Y2 x1, xlab(0 (5) 20) ylab(0 (5) 15)

scatter Y3 x1, xlab(0 (5) 20) ylab(0 (5) 15)

scatter Y4 x2, xlab(0 (5) 20) ylab(0 (5) 15)

The xlab and ylab options are to ensure that the same axes are used for all graphs. The x-axes
go from 0 to 20 with tick-marks every 5, whilst the Y -axes go from 0 to 15 with tick-marks every
5. Note that Y1, Y2 and Y3 are all plotted against x1, but Y4 is plotted against x2.

You should satisfy yourself that these datasets really do produce the same linear models by
entering

regress Y1 x1

regress Y2 x1

regress Y3 x1

regress Y4 x2
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The Automobile Data

Load the auto dataset which is distributed with stata (the command sysuse auto, clear will
achieve this). Fit a linear model to predict fuel consumption (mpg, miles per gallon) from the
weight of the car (weight, measured in lbs), using the command regress mpg weight

1.1 Is fuel consumption associated with weight ?

1.2 What proportion of the variance in mpg can be explained by variations in weight ?

1.3 What change in mpg would be expected for a one pound increase in weight ?

1.4 What fuel consumption would you expect, based on this data, for a car weighing 3000
lbs ? (Hint: the command lincom cons + 3000*weight will give you the answer, along
with a 95% confidence interval around the expected value. I’ll explain how it works next
week)

1.5 Would it be reasonable to use this regression equation to calculate the expected fuel
consumption of a car weighing 1000 lbs ?

2.1.3 Diagnostics

Constancy of Variance

Use the data $datadir/constvar, which is simulated data generated for this practical.

1.6 Perform a regression of y on x, using the command regress y x. Is there a statistically
significant association between y and x ?

Create standardised residuals using the command predict rstand, rstand. Create predicted
values using the command predict yhat. Now produce a graph of standardised residuals
against predicted values with the command scatter rstand yhat.

1.7 Would you conclude that the variance is constant for all values of yhat, or is there any
evidence of a pattern in the residuals ?

1.8 Confirm (or disprove) your answer to the previous question by using the command
hettest.

1.9 Produce a residual vs fitted value plot with the command rvfplot. Would this plot give
the same conclusion that you reached in the previous question ?

Use the command gen ly = ln(y) to generate a new variable equal to the log of y. Perform
a regression of ly on x with the command regress ly x. Generate new standardised residu-
als and predicted values with the commands predict rstand2, rstand and predict yhat2.
Produce a plot of the standardised residuals against the fitted values with scatter rstand2

yhat2.

1.10 Is the variance of the residuals constant following this transformation ?
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1.11 Confirm your answer to the previous question with the command hettest.

Confirming Linearity

Use the data $datadir/wood73. This is simulated data to illustrate the use of the CPR plot.

1.12 Plot graphs of Y against x1 and Y against x2 with the commands scatter Y x1 and
scatter Y x2. Do these graphs suggest a nonlinear association between Y and either x1
or x2 ?

1.13 Perform a regression of Y on x1 and x2 with the command regress Y x1 x2.

1.14 Produce CPR plots for x1 and x2 with the commands cprplot x1 and cprplot x2. Do
either of these plots suggest a non-linear relationship between Y and either x1 or x2 ?

1.15 Generate a new variable, x3, equal to the square of x1, with the command gen x3 =

x1^2. Include x3 in the regression equation with the command regress Y x1 x2 x3.
Is x3 a statistically significant predictor of Yl ?

1.16 Produce a CPR plot for x1, x2 and x3. Is there still evidence of non-linearity ?

1.17 Use the command predict Yhat, xb to generate predicted values for Y. Plot Y against
Yhat with the command scatter Y Yhat. How good are x1, x2 and x3 at predicting
Y ? Is this what you expected from the value of R2 from the regression ?

Outlier Detection

Use the data $datadir/lifeline. This data was collected to test the hypothesis that the age
to which a person will live is governed by the length of the crease across the palm known as the
“lifeline” in palmistry. The age at which each subject died is given by age, and the length of
their lifeline (normalised for body size) is given by lifeline.

1.18 Perform a regression of age on lifeline, using the command regress age lifeline.
Is there a significant association between age at death and the length of the lifeline in
this dataset ?

1.19 Produce a plot of age on lifeline, using the command scatter age lifeline. Are
there any points that lie away from the bulk of the data ? If there are, are they outliers
in age, lifeline or both ?

1.20 Are there any points in the above graph that you would expect to have undue influence
on the regression equation ?

1.21 Calculate Cook’s distance for each observation with the command predict cooksd,

cooksd. Calculate the predicted age at death for each observation with the command
predict predage. Plot Cook’s distance against predicted age at death with scatter

cooksd predage. Do any observations have an unusually large Cook’s distance ?
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1.22 Use summarize cooksd, det to identify the value of the largest Cook’s distance. Rerun
the regression excluding the point with the largest Cook’s distance using the command
regress age lifeline if cooksd < x , for some value of x of your choice. How does
removing this point affect the regression ?

1.23 Repeat the above analysis removing the two most influential points. Does this change
your conclusions about the association between age at death and length of lifeline in this
dataset ?

1.24 What is your conclusion about the association between age at death and length of lifeline
in this dataset ?

Confirming Normality

We will continue to use the data in $datadir/lifeline. Redo the regression including all obser-
vations with the command regress age lifeline, then use the command predict rstand,

rstand to produce standardised residuals.

1.25 Draw a normal plot of the standardised residuals with the command qnorm rstand. Do
the plotted points lie on a straight line ? Are there any observations that do not appear
to fit with the rest of the the data ?

1.26 Confirm your answer to the previous question by formally testing for normality of the
residuals with the command swilk rstand. Do the residuals follow a normal distribu-
tion ?

2.1.4 Complete Example

This example uses hsng.dta, a dataset consisting of data on housing in each state in the USA
taken from the 1980 census. The variables we are particularly interested in are rent, the median
monthly rent in dollars; faminc, the median annual family income in dollars; hsng, the number
of housing units; hsngval, the median value of a housing unit; and hsnggrow, the percentage
growth in housing. We are going to see if we can predict the median rent in a state from the
data we have on income and housing provision.

Enter the data into stata using the command use "$datadir/hsng.dta", clear.

Initial Regression

Use the command regress rent hsngval hsnggrow hsng faminc to fit a linear model which
predicts rent from faminc, hsng, hsngval, and hsnggrow.

1.27 How many observations are used in fitting this regression model ?

1.28 How many of the predictor variables are statistically significant ?

1.29 What is the coefficient for hsnggrow and its 95% confidence interval ?
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1.30 How would you interpret this coefficient and confidence interval ?

1.31 What is the value of R2 for this regression ? What does this mean ?

Diagnostics: Constancy of Variance

Create standardised residuals using the command predict rstand, rstand. Create predicted
values using the command predict pred val. Now produce a graph of standardised residuals
against predicted values with the command scatter rstand pred val.

1.32 Would you conclude that the variance of the residuals is the same for all predicted values
of rent ?

1.33 Compare the plot you have just produced to the plot produced by rvfplot. Would you
have come to the same conclusion about the constancy of variance using this plot ?

Diagnostics: Linearity

Produce a CPR plot for each of the variables faminc, hsng, hsngval, and hsnggrow, using the
command cprplot varname .

1.34 Is there any evidence of non-linearity in the association between the four predictor vari-
ables and the outcome variable ?

Diagnostics: Influence

Calculate Cook’s distance for each observation, using the command predict cooksd, cooksd.
Produce a graph of Cook’s distance against the predicted values with scatter cooksd pred val.

1.35 Are there any observations with an unusually large Cook’s distance ?

1.36 If so, which state or states ? (You can use the command list state if cooksd > x

to find out, by putting in a suitable value for x .)

Rerun the regression analysis excluding any states with a Cook’s distance of greater than 0.5.
Use the command

regress rent hsngval hsnggrow hsng faminc if cooksd < 0.5

1.37 Compare the coefficients and confidence intervals for each of the 4 predictors. Have any
of them changed substantially ? Are any of them no longer significantly associated with
the outcome ?

Now generate new predicted values with the command predict pred2. Compare the new
predicted values with the old ones using scatter pred val pred2.

1.38 Is it important to exclude the influential observation(s) from the regression analysis ?
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Diagnostics: Normality

1.39 Produce a normal plot of the standardised residuals with qnorm rstand. Do the plotted
points lie reasonably close to the expected straight line ?

1.40 Use swilk rstand to test whether the residuals are normally distributed. Does the
result of the test confirm your answer to the previous question ?
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