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1 Sampling and Confidence Intervals

1.1 Types of Sample

Often, it is impractical survey every subject in an entire population. Instead, we survey a much
smaller sample, and see what we can infer about the population from that sample. However, for
the inference to be reliable, the sample has to be carefully selected to ensure it is representative
of the population.

1.1.1 Simple Random Sample

The simplest type of sample to draw inference from is the simple random sample. In this type
of sampling, every individual has exactly the same probability of being selected for our sample.
So if we have a population of 100,000, and want to sample 1,000 people from it, every person in
the population should have a 1 in 100 chanve of being selected.

There are two big issues with simple random sampling. One is the fact that you need to
have a list of everyone in your population. This may be hard to obtain. For example, GP lists
are often used as a sampling frame, but not everyone is registered with a GP, so the sampling
frame is incomplete. The same is true for electoral registers. This means that the population
you are investigating may not be the population you wish to investigate: you are not sampling
from “People living in this area”, but “People registered with a G.P. in this area” or “People
registered to vote in this area”. Whether this is a problem or not depends on how different the
population we are actually studying is from the population we intended to study.

The second problem is refusals. In a simple random sample, everyone has the same prob-
ability of being in the sample. However, some people have already assigned themselves a 0%
probability of being in the sample by deciding they don’t want to participate. Again, you can
think of this as changing the population you are studying: “People from the population we wish
to study who are happy to take part in our study”. This may or may not be an issue, depending
on the extend to which those who don’t take part differ from those who do.

1.1.2 Stratified Sample

A stratified sample can be thought of as a number of simple random samples. The population
to be studied is divided into strata, and a simple random sampling is performed within each
stratum. The probability of being in the sample is the same for every individual within a given
stratum, but can differ between strata.

A stratified sample can be useful if you wish to estimate something that varies widely between
strata. For example, if you are interested in the prevalence of a condition that is very common
in older subjects and rare in younger ones, you may want to recruit more younger subjects in
order to get a equally precise estimate of the prevalence in the young as you would get in the
older subjects.

1.1.3 Cluster Sample

Another commonly used type of sampling is cluster sampling: in which groups of subjects
(clusters) are sampled rather than individuals. There are a number of situations where this can
be useful.

1. There is no sampling frame for individuals, but there is for clusters. For example, you
may have a list of houses, but not a list of the residents of those houses. It would then be
impossible to sample individuals, but it is possible to sample houses.
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1.2 From Sample to Population

2. It is cheaper and easier to recruit a number of people at the same time. Various addons to
the ten-yearly census uses this method: they phone a landline and ask about everybody
living in that house.

3. It may be that an intervention can not be allocated to individuals, only to clusters of
individuals. For example, to assess the impact of posters in G.P.’s waiting rooms, you
cannot randomly allocate individuals to look at or not look at the poster, but you can
randomly allocate the posters to some waiting rooms and not to others

Cluster sampling requires special methods for analysing the data collected, which we will
not mention in this course.

1.1.4 Other Types of Sample

There are other types of sample that you may hear mentioned, but I do not recommend using
them. One is the quota sample, beloved of market researchers, where you have a fixed number
of subjects to recruit to each subgroup. This can be thought of as a stratified sample, with
the groups to which you are recruiting as the strata. However, you do not know what the
sampling probability is for any stratum, so you don’t know what proportion of the population
each stratum represents. With a stratified sample, if you want to calculate a population statistic,
you can reweight each stratum according to the size it should have in the population, rather
than the size it has in the sample, and hence make the sample representative of the population.
With a quota sample you can’t do that.

In a systematic sample, you randomly select a starting point in your sampling frame, then
take every nth subject until you have your desired sample size. This can work, unless there
is clustering or periodicity in your sampling frame. For example, if the sampling frame is in
alphabetical order by surname, then you are unlikely ever to select two subjects from the same
family, whilst in a simple random sample that would happen. That means that characteristics
that are shared in a family, such as diet, will vary more in a systematic sample than in a simple
random sample. You could fix this problem easily if you have an electronic sampling frame, by
assigning each record a random number and sorting on that number, to put the sampling frame
into a random order. Then a systematic sample would be a random sample.

One last type of sample to look out for is the convenience sample. This is where you simply
recruit people who are easy to find. For example, when testing a questionnaire, you may ask
your colleagues to complete it for you, and see how long it takes. However, your colleagues are
likely to have more education than the population average, and so complete the questionnaire
quicker. Provided that you are aware of the limited population you are recruiting from, this
is not a problem, but it is not possible to make inference about the general population from a
convenience sample.

1.2 From Sample to Population

The purpose of collecting sample data is to see what it can tell us about the population. We can
be interested in point estimates (“What is our best guess at the population value ?”), interval
estimates (“Can we be fairly certain the population value lies within a given range ?”) and
hypothesis tests (“Can we be fairly certain the population value is not one particular value ?”).
In this chapter, we are only concerned with the first two questions, the next chapter covers the
third one.
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1 Sampling and Confidence Intervals

In order to help keep track of whether we are talking about population statistics or sample
statistics, we generally use Greek letters for population values and Roman letters for sample
values. The most commonly used notation is given in Table 1.1

Parameter Population Value Sample Value

Mean µ m
Standard deviation σ s
Proportion π p

Table 1.1: Notation for Population and Sample Parameters

1.2.1 Estimating a Mean

Suppose that we are interested in the mean value in the population (µ). The mean we calculate
from the sample should be close to the population value, but will not be exactly equal to it. If
we were to take a number of samples, we would expect the means to be different in each sample.
However, we would expect the sample means to be close to the population mean, and to vary
less in larger samples. This is illustrated in the example below.

Example of estimating a mean

For this example, the population consists of 10,000 individuals. The variable we are interested
in, x, takes integer values 0, 1, . . . , 9, and 1,000 individuals have each of the 10 possible values.
The population distribution of x is shown in Figure 1.1.
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Figure 1.1: Population Distribution for Estimating Mean Example

From this population, samples of size 5, 25 and 100 were repeatedly taken, and the mean
of each sample was calculated. Figure 1.2 shows the distribution of the sample means for each
sample size, each histogram based on 2,000 samples.

It is clear from 1.2 that the distibution of the sample means is centred on the same value, 4.5,
irrepective of the sample size. It is also clear that the distibution varies less as the sample size
increases. Finally, the distribution of the sample mean appears to be normal, particularly for
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1.2 From Sample to Population
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Figure 1.2: Distributions of sample means of different sizes

the larger sample sizes, despite the fact that the distribution of the original variable (in Figure
1.1) is far from normal.

The Sampling Distribution of a mean

The distribution of the values taken by the sample mean (x̄) as samples (of a given size) are
repeatedly taken from a fixed population is called the sampling distribution of x̄. All statistical
inference (working out what our sample tells us about the population from which it was taken)
depends on this distribution. There are three important properties of the sampling distribution
of the mean:

E(x̄) = µ i.e. on average, the sample mean is the same as the population mean.

Standard Deviation of x̄ = σ√
n

i.e the uncertainty in x̄ increases with σ, decreases with n. The

standard deviation of the sampling distribution of the mean is also called the Standard
Error

x̄ is normally distributed This is true whether or not x is normally distributed, provided n is
sufficiently large. Thanks to the Central Limit Theorem. This is clearly shown in Figure
1.2: the sampling distributions of the means are all normal, despite the fact that the
distribution of x, shown in Figure 1.1, is clearly not normal.

The Standard Error

The standard error is the most important concept in statisticsa. The standard error is the
standard deviation of the sampling distribution. We will shortly see how the standard error can
be used to calculate confidence intervals for population parameters, and in the next chapter how
it can be used to perform hypothesis tests.

1.2.2 Estimating the Variance σ

The standard error of x̄ is defined in terms of the population variance, σ2. However, we do not
know what this is, and need to estimate if from our sample.

In a population of size N , the variance of x is given by

σ2 =
Σ(xi − µ)2

N
(1.1)

aAt least in frequentist statistics, which is the only type of statistics this course is concerned with
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1 Sampling and Confidence Intervals

with the summation being over every observation in the population. However, if we only have
a sample from this population, we do not know the population mean µ. We can estimate it as
the sample mean, x̄, but this value will depend on the actual values we observe in the sample.
Since x̄ is the number that minimises Σ(xi − x̄)2, this sum will be smaller than the value we

really want, Σ(xi − µ)2. Hence, s2 = Σ(xi−x̄)2

n will be smaller than σ2. However, dividing by

n− 1 rather than n is sufficient to correct this underestimate, and s2 = Σ(xi−x̄)2

n−1 is an unbiased

estimate of the population variance σ2, and can be used to calculate the standard error of the
mean without problems.

1.2.3 Estimating a Proportion

Estimating a proportion works in exactly the same way as estimating a mean. In fact, esti-
mating a proportion is estimating a mean: it is estimating the mean of a variable which takes
the value 0 for all observations in which the characteristic of interest is absent, and 1 for all
observations in which it is present. Adding all these values gives the number of observations
with the characteristic, dividing by the sample size gives the proportion. Furthermore, we have
seen that the sampling distribution of x̄ is normal (in sufficiently large samples), even if x is not.

1.2.4 Confidence Intervals

We have seen that the sampling distribution of a mean is normal, with mean µ and standard
deviation σ√

n
. The sample mean that we have can be thought of as a single observation drawn

at random from this distribution. The 2.5th centile of this distribution is µ − 1.96 σ√
n

, and the

97.5th centile is µ + 1.96 σ√
n

. Hence, there is a 95% chance that our sample value will lie in

between these two values.
So, although we don’t know the exact value of µ, we know that there is a 95% chance that

it lies within 1.96 × s√
n

, and we do know both s and n. Hence, we can calculate an interval,

x̄ − 1.96 s√
n

to x̄ + 1.96 s√
n

, in which we are 95% certain that the population will lie. This is

known as a 95% confidence interval.
In theory, we can calculate a confidence interval with any chosen probability that the popu-

lation mean lies within it. The less certain we need to be, the narrower the confidence interval
can be. In practice, the 95% level is always used.

Confidence Interval Example

As an example of calculating a 95% confidence interval, suppose we measured serum albumin
in a sample fo 216 patients with primary biliary cirrhosis. The mean value in the sample was
34.46 g/l, and the values had a standard deviation of 5.84 g/l.

To calculate a 95% confidence interval for the mean serum albumin level in primary biliary
cirrhosis patients, we first have to calculate the standard error. This is

Standard Error of x̄ = 5.84√
216

= 0.397

⇒ 95% Confidence Interval = 34.46± 1.96× 0.397

= (33.68, 35.24)

So we can be 95% certain that the population value is between 33.7 and 35.2 g/l.
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1.2 From Sample to Population

Confidence Interval For a Proportion

If the sample size is large enough, the sampling distribution of a proportion p will be approxi-

mately normal, and its standard error in a sample of size n will be
√

p(1−p)
n . As a rule of thumb,

if both p × n and (1 − p) × n are bigger than 5, the sample size is large enough to assume
normality.

Confidence Intervals in Stata

cmd:ci Stata has a command ci that can be used to calculate confidence intervals around a
mean or proportion. If you want to calculate a confidence interval around a proportion in a
small sample, where the normal approximation may not be very accurate, there is a binomial

option which will use the exact binomial distribution to calculate the confidence interval.

1.2.5 Sample Size Calculations

In general, the aim of any study is to estimate a statistic: a mean, proportion, relative risk,
hazard ratio or some other characteristic of a population. The larger our study is, the more
precisely we can estimate this statistic. We can choose the size of study we need to provide
adequate precision if we know how the sampling distribution depends on the sample size, and
we have a definition of adequate, i.e. what is the widest confidence interval we will accept.

Given that the confidence interval is x̄ ± 1.96σ√
n

, its width depends only on n and σ. If we

have an estimate of σ, then we can choose n to give us a confidence interval of any width.
Suppose that we want the width of our confidence interval to be 2W , so that the interval

itself is x̄±W Then

W = 1.96× Standard Error

= 1.96× σ√
n

⇒ W 2 =
1.962σ2

n

⇒ n =

(
1.96σ

W

)2

So collecting a sample of at least
(

1.96σ
W

)2
subjects will provide a 95% confidence interval

that is no wider than 2W .

Sample Size Calculation Example

Suppose that using the primary biliary cirrhosis data in Section 1.2.4, we want to be know the
population mean serum albumin level to within 0.5 g/l. How many patients would we need to
study (assuming a standard deviation of 5.84 g/l) ?

W = 0.5

σ = 5.84

⇒ n =

(
1.96σ

W

)2

=

(
1.96× 5.84

0.5

)2
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1 Sampling and Confidence Intervals

≈ 524

So we would need a sample size of at least 524.
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2 Sampling and Confidence Intervals Practical
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2 Sampling and Confidence Intervals Practical

2.0.1 Generating Random Samples

In this part of the practical, you are going to repeatedly generate random samples of varying size
from a population with known mean and standard deviation. You can then see for yourselves
how changing the sample size affects the variability of the sample mean. If you want to store
your results in an Excel spreadsheet, double-click to open a suitable one.

1. Ensure there is no data in stata’s memory by entering the command clear

2. Set the sample size to 5 with the command set obs 5

3. Generate a variable x with a mean of 0 and a standard deviation of 1, using the command
generate x = invnorm(uniform())

4. Obtain the mean of x in this sample from the command summarize x

5. Record the mean for this sample.

6. Repeat steps 1-5 10 times until the first column of the spreadsheet is full.

7. Now repeat the procedure a further ten times, but using set obs 25 in step 2, to complete
column 2 of the spreadsheet.

8. Complete column 3 of Table ?? using the command set obs 100 in step 2.

9. Now calculate the mean and standard deviation of the values in each column.
If you have used the Excel spreadsheet, it will do it for you. Otherwise, the easiest way to
do this is to use the commands

clear

edit

to get a spreadsheet view of an empty stata dataset, and type the values in as three
columns. If you have stored them in a spreadsheet, you could cut and paste them, or use
the command import excel: use the help command to find out how. Stata will call the
three variables var1, var2 and var3 by default (unless you cut and paste the variable
names from the spreadsheet), but you can rename them by double clicking on the name,
and typing a new name in the dialog box that appears. When you have entered the data,
click on the cross in the right hand top corner to close the spreadsheet view. (Once upon
a time, stata would not carry out commands when a spreadsheet view was open. Current
statas will, but the sheet will hide the results window).

Now you can use the command

summarize var1 var2 var3

to get the mean and standard deviation of these variables.

2.0.2 Means

If the standard deviation of the original distribution is σ, then the standard error of the sample
means is σ /

√
n, where n is the sample size.

0.1 If the standard deviation of measured heights is 9.31 cms, what will be the standard
error of the mean in:
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i a sample of size 49 ? . . . . . .

ii a sample of size 100 ? . . . . . .

0.2 Imagine we only had data on a sample of size 100, where the sample mean was 166.2cm
and the sample standard deviation was 10.1cm.

i Calculate the standard error for this sample mean (using the sample standard
deviation as an estimate of the population standard deviation).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ii Calculate the interval ranging 1.96 standard errors either side of the sample mean.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.3 Imagine we only had data on a sample size of 36 where the sample mean height was
163.5 cm and the standard deviation was 10.5cm.

i Calculate the 95% confidence interval for the sample mean.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

F
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.23

Figure 2.1: Weights in a random sample of 100 women

0.4 Figure 2.1 is a histogram of measured weight in a sample of 100 individuals.

i Would it be better to use the mean and standard deviation or the median and
interquartile range to summarize this data ?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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2 Sampling and Confidence Intervals Practical

ii If the mean of the data is 69.69kg with a standard deviation of 12.76kg, calculate
a 95% confidence interval for the mean.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.0.3 Proportions

Again using our height and weight dataset of 412 individuals, 234 (56.8%) are women and 178
(43.2%) are men.

If we take a number of smaller samples from this population, the proportion of women will
vary, although they will tend to be scattered around 57%. Figure 2.2 represents 50 samples,
each of size 40.
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Figure 2.2: Proportion of Women in 50 samples of size 40
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0.5 What would you expect to happen if the sample sizes were bigger, say n=100 ?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.6 In a sample of 40 individuals from a larger population, 25 are women. Calculate a 95%
confidence interval for the proportion of women in the population.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Note: When sample sizes are small the use of standard errors and the normal distribution
does not work well for proportions. This is only really a problem if p (or (1-p)) is less than 5/n
(i.e. there are less than 5 subjects in one of the groups).

0.7 From a random sample of 80 women who attend a general practice, 18 report a previous
history of asthma.

i Estimate the proportion of women in this population with a previous history of
asthma, along with a 95% confidence interval for this proportion.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ii Is the use of the normal distribution valid in this instance ?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.8 In a random sample of 150 Manchester adults it was found that 58 received or needed to
receive treatment for defective vision. Estimate the proportion of adults in Manchester
who receive or need to receive treatment for defective vision, a 95% confidence interval
for this proportion.

i Proportion

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ii 95% Confidence interval

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.0.4 Confidence Intervals in Stata

Load the blood pressure data in its wide form into stata with the command

15



2 Sampling and Confidence Intervals Practical

sysuse bpwide

This is fictional data concerning blood pressure before and after a particular intervention.

0.9 Use the command

histogram bp_before

to see if this variable is normally distributed. What do you think ?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.10 Create a new variable to measure the change in blood pressure and find its mean value
with the commands

generate bp_diff = bp_after - bp_before

summarize bp_diff

What is the mean change in blood pressure ? . . . . . .

0.11 Create a confidence interval for the change in blood pressure with the command

ci bp_diff

Does the intervention reduce blood pressure in general ?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.12 Look at the histogram of changes in blood pressure using the command

histogram bp_diff

Does this confirm your answer to the previous question ?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.13 Create a new variable to measure whether blood pressure went up or down in a given
subject using the command

generate down = bp_after < bp_before

Use the tabulate command to see how many subjects, and what proportion, showed a
decrease in blood pressure.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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0.14 Create a confidence interval for the proportion of subjects showing a decrease in blood
pressure with the command

ci down, binomial

Does this confirm the effect of the intervention on blood pressure ?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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