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Part I - Tropical linear algebra basics
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Max-plus and variants

R = R[ f�∞g
a� b = max (a, b)
a
 b = a+ b�
R,�,


�
... idempotent, commutative semiring

Notation:
ε for �∞
a�1 stands for �a
a
 a
 a
 ...
 a| {z }

k�times

= ak
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From classical to tropical...

V.Maslov+V.Kolokoltsov (1980s): "dequantisation":�
ak + bk

�1/k
�! max (a, b) for k �! ∞
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Max-plus and variants

G = (G ,
,�) ... linearly ordered commutative group
a� b = max (a, b)
ε � a for all a 2 G (adjoined)
(G [ fεg ,�,
) ... commutative idempotent semiring
G0 = (R,+,�) ... max-plus
G1 = (R,+,�) ... min-plus (x �! �x)
G2 = (R+, �,�) ... max-times (x �! ex )
G3 = (Z,+,�)
...
In what follows: G0
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Extension to matrices and vectors

A� B = (aij � bij )
A
 B =

�
∑�
k aik 
 bkj

�
α
 A = (α
 aij )

diag(d1, ..., dn) =

0BBBBBBB@

d1
. . . ε

. . .

ε
. . .

dn

1CCCCCCCA
I = diag(0, ..., 0)
A
 A
 A
 ...
 A| {z }

k�times

= Ak
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Some basic properties

Compared to (R,+, .) we are
losing invertibility
gaining idempotency
A�1 exists () A is a generalised permutation matrix
Idempotency: a� a = a

(a� b)k = ak � bk , if k � 0
(A� B)k 6= Ak � Bk
(I � A)k = I � A� A2 � ...� Ak
Another useful property: A � B ) A
 C � B 
 C
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Tropical linear algebra: non-linear becomes "linear"

x1

x2

x3

a1

a2

x3 = max (x1 + a1, x2 + a2)

= a1 
 x1 � a2 
 x2 = (a1, a2)

�
x1
x2

�

Peter Butkovic Manchester 19/20 January 2012



Basic problems

One-sided max-linear systems:
A
 x = b
A
 x � b
A
 x = λ
 x (x ... eigenvector if x 6= ε)
A
 x � λ
 x (x ... subeigenvector if x 6= ε)
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Basic problems

Two-sided max-linear systems:
A
 x = B 
 x
A
 x = B 
 y
A
 x � c = B 
 x � d
A
 x = λ
 B 
 x (generalized eigenproblem)
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Basic problems

Max-linear programming:
f T 
 x �! min (max)
s.t.
A
 x = b

f T 
 x �! min (max)
s.t.
A
 x � c = B 
 x � d

Peter Butkovic Manchester 19/20 January 2012



Basic problems

Periodicity of matrix powers:
A,A2,A3, ...
Periodicity of matrix orbits:
A
 x ,A2 
 x ,A3 
 x , ...
Tropical polynomials, characteristic polynomial and
Cayley-Hamilton
Linear independence, regularity, rank,...
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Tools for working with tropical matrices

The conjugate and dual operators

Maximum cycle mean

Transitive closures

Permanent (tropical)
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Dual operators and conjugation

Dual operators:

a�0 b = min(a, b)

a
0 b = a+ b

�∞
0 +∞ = +∞ = +∞
0 �∞

The conjugate:
A# = �AT

Theorem (Cuninghame-Green, 1979)

A
 x � b () x � A# 
0 b

Residuation, Galois connection, ...
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Dual operators and conjugation

A
 x � b () x � A# 
0 b
Corollary 1: For any A 2 R

m�n
and b 2 R

m
the system

A
 x � b has a solution and x df= A# 
0 b is the greatest solution.
Corollary 2: For any A,B 2 R

m�n

A

�
A# 
0 B

�
� B

and [thus also]

A

�
A# 
0 A

�
� A
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Dual operators and conjugation

Remark: For every A actually

A

�
A# 
0 A

�
= A

and more generally:

A#AA#A...A#AA#

AA#AA#...AA#A



0 
...

0


0 

0...
0 


�
A# 
 A

�

0 ...
0

��
A# 
 A

�

0 A

�

 ...
0 A# = A#
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Dual operators and conjugation

x = A# 
0 b ... the principal solution to A
 x � b
What about A
 x = b?
Suppose A
 x = b for some x
) A
 x � b
) x � x
) A
 x � A
 x
) b = A
 x � A
 x � b
) A
 x = b
Corollary 3: A
 x = b has a solution if and only if A
 x = b
that is

A

�
A# 
0 b

�
= b
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Dual operators and conjugation

x = A# 
0 b
For j = 1, ..., n

x j = min
i

�
a#ji + bi

�
= min

i
(�aij + bi )

= �max
i
(aij � bi )

Mj = fk; x j = �akj + bkg , j = 1, ..., n
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Dual operators and conjugation

Combinatorial method (Cuninghame-Green, 1960): A
 x = b
if and only if x � x and[

xj=x j

Mj = f1, ...,mg

Corollary: Finding a solution to A
 x = b with the least number

of components equal to x = A# 
0 b is an NP-complete problem.
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Maximum cycle mean

Given A = (aij ) 2 R
n�n
, the mean of a cycle σ = (i1, ..., ik , i1):

µ(σ,A) =
ai1 i2 + ai2 i3 + ...+ aik i1

k

Maximum cycle mean of A 2 R
n�n :

λ(A) = max fµ(σ,A); σ cycleg

µ(σ,A) = λ(A) ... σ is critical

Many algorithms for the computation of λ (A) (Karp�s is O
�
n3
�
)
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Maximum cycle mean is the principal eigenvalue

For any A, λ(A) is
an eigenvalue of A
the greatest (principal) eigenvalue of A
the only eigenvalue of A whose corresponding eigenvectors may be
�nite
the unique eigenvalue if A is irreducible (in this case all
eigenvectors are �nite)
Every eigenvalue of A is the maximum cycle mean of some
principal submatrix
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Maximum cycle mean - de�nite matrices

A is (max-)de�nite if λ(A) = 0
λ (α
 A) = α
 λ (A)

In particular: λ
�
(λ (A))�1 
 A

�
= (λ (A))�1 
 λ (A) = 0

A �! Aλ = (λ (A))
�1 
 A (transition to a de�nite matrix)

Peter Butkovic Manchester 19/20 January 2012



"Passage Theorem" (Friedland 1986)

A ... an irreducible nonnegative matrix
ρ (A) ... the Perron root of A�
Ak
	∞
k=1 ... sequence of Hadamard (Schur) powers

Dequantisation:
�
ρ
�
Ak
��1/k �! λ(A) (in max-times) and

λ (A) � ρ (A) � nλ (A)
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Associated graph

A = (aij ) 2 R
n�n �! DA = (N,E , (aij ))

where E = f(i , j); aij > �∞g
A is irreducible i¤ DA strongly connected
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Critical graph

µ(σ,A) = λ(A) ... σ is critical
CA = (N,Ec ) where Ec is the set of arcs of all critical cycles
Nc ... the set of nodes of critical cycles
i � j (equivalent nodes) ... i and j belong to the same critical
cycle
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Transitive closures

For A 2 R
n�n

de�ne:
A+ = A�A2 �A3 � ... (metric matrix/weak transitive closure)
A� = I � A� A2 � A3 � ... (Kleene star/strong transitive closure)
If A is de�nite:
A+ = A� A2 � ... �An�1 � An
A� = I � A� A2 � ...� An�1
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Eigenspaces and subeigenspaces

V (A,λ) = fx 2 R
n
;A
 x = λ
 xg,λ 2 R

V �(A,λ) = fx 2 R
n
;A
 x � λ
 xg,λ 2 R

V (A) ... the set of all eigenvectors
Λ(A) ... the set of all eigenvalues
Tropical subspace is V � R

n
if for x , y 2 V and α 2 R :

x � y 2 V and
α
 x 2 V
V (A,λ) and V � (A,λ) are (tropical) subspaces
Bases? Dimension?
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Finitely generated tropical subspaces - bases and dimension

If v1, ..., vk 2 R
n
, α1, ..., αk 2 R then ∑�

j=1,...,k αj 
 vj is a
max-combination of v1, ..., vk
For M 2 R

m�n
we denote span (M)

def
=
n
M 
 z ; z 2 R

n
o

span (M) is a (�nitely generated) subspace
Columns of M are called generators of span (M)
A basis of a �nitely generated subspace is any set of generators
such that none of them is a max-combination of the others
Dimension of a �nitely generated subspace is the size of (any of)
its basis

Peter Butkovic Manchester 19/20 January 2012



Eigenspaces and subeigenspaces - bases and dimension

Assume A 2 R
n�n
,λ (A) > ε and recall Aλ = (λ (A))

�1 
 A
nc ... number of critical nodes, that is jNc j
ncc ... number of non-trivial components of CA
n0 = n� nc
Denote (Aλ)

+ by A+λ , (Aλ)
� by A�λ�

A+λ
�
c = submatrix formed by the columns with critical indices

Note: A�λ is just I � A+λ
Theorem:
V (A,λ (A)) = span

��
A+λ
�
c

�
and dimV (A,λ (A)) = ncc

V � (A,λ (A)) = span (A�λ) and dimV (A,λ (A)) = ncc + n0
Essentially unique bases of V (A,λ (A)) and V � (A,λ (A)) can be
found in O

�
n3
�
time

Peter Butkovic Manchester 19/20 January 2012



Finite subeigenvectors

Finite subeigenvectors may be important for applications:

V �� (A,λ) = fx 2 Rn;A
 x � λ
 xg ,λ 2 R

Theorem: Let A = (aij ) 2 R
n�n
,A 6= ε,λ 2 R. Then

V �� (A,λ) 6= ∅ if and only if λ � λ (A) and λ > ε.
If λ � λ (A) and λ > ε then

V �� (A,λ) =
�
(λ�1 
 A)� 
 u; u 2 Rn	 .
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An application: Bounded mixed-integer solution to a
system of dual inequalities

BMISDI: Find, or prove that it does not exist, a vector
x = (x1, ..., xn)

T satisfying:

xi � xj � bij , (i , j 2 N)
uj � xj � lj , (j 2 N)
xj integer, (j 2 J)

9=;
where u = (u1, ..., un)T , l = (l1, ..., ln)T 2 Rn and
J � N = f1, ..., ng are given.
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An application: Bounded mixed-integer solution to a
system of dual inequalities

The system of dual inequalities (SDI)

xi � xj � bij (i , j 2 N)

is equivalent to:

max
j2N

(bij + xj ) � xi (i 2 N)

in tropical notation:

∑�
j2N bij 
 xj � xi (i 2 N)

or in the compact form:

B 
 x � x
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An application: Bounded mixed-integer solution to a
system of dual inequalities

) we are looking for �nite subeigenvectors of B corresponding to
λ = 0
) λ (B) � 0 is a necessary condition for the solvability of SDI
) the set of all �nite solutions to B 
 x � x is

V �� (B, 0) = fB� 
 z ; z 2 Rng
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An application: Bounded mixed-integer solution to a
system of dual inequalities

(B 
 x � x and x � u) ()

() x = B� 
 z � u, z 2 Rn

() x = B� 
 z , z � (B�)# 
0 u

=) x � B� 

�
(B�)# 
0 u

�
) l � B� 


�
(B�)# 
0 u

�
is necessary and su¢ cient for the

existence of a solution to SDI satisfying l � x � u
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An application: Bounded mixed-integer solution to a
system of dual inequalities

Algorithm BMISDI
Input: B 2 Rn�n, u, l 2 Rn and J � N.
Output: x satisfying BMISDI conditions or an indication that no
such vector exists.
x := u
xj := bxjc for j 2 J
z := (B�)# 
0 x , x := B� 
 z
If l � x then stop (no solution)
If l � x and xj 2 Z for j 2 J then stop else go to 2.
BMISDI requires O(n3 + n2L) operations of +, max, min, � and
b�c, where

L = ∑j2J (uj � lj )
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Finding all eigenvalues: the reduced graph

A t B means: A can be obtained from B by a simultaneous
permutation of rows and columns
If A t B then
Λ(A) = Λ(B) and
there is a bijection between V (A,λ) and V (B,λ) for any λ
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Finding all eigenvalues: the reduced graph

Frobenius Normal Form (FNF):

A t

0BBBBBB@
A11
A21 A22 ε
...

. . .
...

. . .
Ar1 Ar2 � � � � � � Arr

1CCCCCCA
A11, ...,Arr irreducible
The corresponding partition of N : N1, ...,Nr ... classes (of A)
Reduced digraph Red(A) (partially ordered set):
nodes: 1, ..., r
arcs: (i , j) : (9k 2 Ni )(9` 2 Nj )ak` > ε
Ni �! Nj or i �! j means: there is a directed path from i to j in
Red(A)
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Finding all eigenvalues: Reduced digraph0BBBBBB@

A11 ε ε ε ε ε
� A22 ε ε ε ε
� � A33 ε ε ε
� ε ε A44 ε ε
ε ε ε ε A55 ε
ε ε ε ε � A66

1CCCCCCA (� 6= ε)

A33 A44 A66

A22

A11 A55

Initial classes: no incoming arcs
Final classes: no outgoing arcs
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Finding all eigenvalues: Spectral Theorem

A in an FNF:0BBBBBB@
A11
A21 A22 ε
...

. . .
...

. . .
Ar1 Ar2 � � � � � � Arr

1CCCCCCA , A11, ...,Arr irreducible
Spectral Theorem (Gaubert, Bapat, 1992):

Λ(A) = fλ(Aii );λ(Aii ) � λ(Ajj ) if j �! ig

Corollary: Every matrix has at most n eigenvalues.
i is called spectral if λ(Aii ) � λ(Ajj ) whenever j �! i
All real numbers λ � minΛ(A) are "subeigenvalues", that is
A
 x � λ
 x for some x 6= ε.
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Part II. Reachability of eigenspaces by matrix orbits
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MULTI-PROCESSOR INTERACTIVE SYSTEM (MPIS)

Processors P1, ...,Pn work interactively and in stages
xi (r) . . . starting time of the r th stage on processor Pi
(i = 1, . . . , n; r = 0, 1, ...)
aij . . . time Pj needs to prepare the component for Pi
xi (r + 1) = max(x1(r) + ai1, . . . , xn(r) + ain)
(i = 1, . . . , n; r = 0, 1, ...)
xi (r + 1) = ∑�

k aik 
 xk (r) (i = 1, . . . , n; r = 0, 1, ...)
x(r + 1) = A
 x(r) (r = 0, 1, . . .)
A : x(0)! x(1)! x(2)! ...
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Processor 1

Processor 2

Processor 3

Processor 4

Processor 5

x (0)
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Processor 1

Processor 2

Processor 3

Processor 4

Processor 5

x (0) x (1)
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Processor 1

Processor 2

Processor 3

Processor 4

Processor 5

x (0) x (1) x (2)
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Processor 1

Processor 2

Processor 3

Processor 4

Processor 5

x (0) x (1) x (2) x (3)
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Processor 1

Processor 2

Processor 3

Processor 4

Processor 5

x (0) x (1) x (2) x (3) x (4)
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Processor 1

Processor 2

Processor 3

Processor 4

Processor 5

x (0) x (1) x (2) x (5)x (3) x (4)
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Processor 1

Processor 2

Processor 3

Processor 4

Processor 5

x (0) x (1) x (2) x (6)x (5)x (3) x (4)
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MPIS: STEADY REGIME

Given x(0), will the MPIS reach a steady regime (that is, will it
move forward in regular steps)?
Equivalently, is there a λ and an r0 such that

x(r + 1) = λ
 x(r) (r � r0)?

x(r + 1) = A
 x(r) (r = 0, 1, . . .)

Steady regime is reached if and only if for some λ and r , x(r) is a
solution to

A
 x = λ
 x
Since

x(r) = A
 x(r � 1) = A2 
 x(r � 2) = . . . = Ar 
 x(0),

a steady regime is reached if and only if Ar 
 x(0) �hits� an
eigenvector of A for some r .
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Reachability

Reachability of an eigenspace: Given A 2 R
n�n

and an x 2 R
n
,

x 6= ε, is there a k such that Ak 
 x is an eigenvector of A?

Various applications - a recent one:
Brackley, Broomhead, Romano, Thiel: Max-Plus Model of
Ribosome Dynamics During mRNA Translation, 2011
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Attraction set

Matrix orbit with starting vector x :
A
 x ,A2 
 x , ...,Ak 
 x , ...
Attraction set:

Attr (A) =
n
x ; (9k)Ak 
 x 2 V (A)

o
V (A) � attr (A)
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Reachability

Eig

Attr

nR
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Cyclicity of a matrix

Cyclicity (index of imprimitivity) of a strongly connected digraph
= g.c.d. of the lengths of its cycles
Cyclicity of a digraph = l.c.m. of cyclicities of its SCC
Let A 2 R

n�n

CA ... critical digraph of A
Cyclicity of a matrix A : σ (A) = cyclicity of CA
A is primitive if σ (A) = 1
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Cyclicity Theorem

Cyclicity Theorem (Cohen et al 1985)
For every irreducible matrix A 2 R

n�n
the cyclicity of A is the

period of A, that is, the smallest natural number p for which there
is an integer T (A) such that

Ar+p = (λ (A))p 
 Ar

for every r � T (A)
T (A) ... transient of A
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Cyclicity Theorem

For A irreducible:

Ar+σ = (λ (A))σ 
 Ar , r � T (A)

For any A (irreducible or not): λ
�
Ak
�
= (λ (A))k for every integer

k � 0
) For A irreducible:

Aσ 
 (Ar 
 x) = λ (Aσ)
 (Ar 
 x) , r � T (A)

Corollary
If A is irreducible then (8x 6= ε)Ar 
 x 2 V (As ) for some r and
s � σ (A)
Reachability asks about s = 1
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Attr(A2)

Attr(A)

Attr(Aσ) = Rn

V(A)

…
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Reachability for irreducible matrices

Theorem (Nachtigall, 1997): Let A 2 R
n�n

be irreducible.
Critical rows and columns of Ar are periodic for r � n2, that is for
all (i , j) 2 (Nc (A)�N) [ (N �Nc (A)) we have:

a(r+σ)
ij = (λ (A))σ 
 a(r )ij

Theorem (Sergeev, 2009): Let A 2 R
n�n

be irreducible and
de�nite. Then for every r � T (A) and k = 1, . . . , n coe¢ cients
αi 2 R (i 2 Nc (A)) such that

Ark � = ∑�
i2Nc (A) αi 
 Ari �

can be found in O
�
n3
�
time.
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Reachability for irreducible matrices

Corollary: If A is irreducible and de�nite then Ar for any
r � T (A) can be found in O

�
n3 log n

�
time (but not r)

) Reachability of V (As ) for any s for A irreducible and de�nite,
and any x can be checked in O

�
n3 log n

�
time
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Reachability for reducible matrices

REACHABILITY: Given A 2 R
n�n
, its eigenvalue λ and x 2 R

n
,

is there a k such that z = Ak 
 x is an eigenvector with
eigenvalue λ? That is A
 z = λ
 z .
Now A reducible - in a Frobenius Normal Form:0BBBBBB@
A11
A21 A22 ε
...

. . .
...

. . .
Ar1 Ar2 � � � � � � Arr

1CCCCCCA , A11, ...,Arr irreducible
R = f1, ..., rg
Aii irreducible may be 1� 1 matrix (ε) ... "trivial" - exclude at
�rst
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Reachability for reducible matrices

For any x 2 R
n
denote

J (x) = fj 2 R; x [Nj ] 6= εg ,
C (x) = fi 2 R; (9j 2 J (x))Ni �! Njg .

Ni , i 2 J (x) is �nal in C (x) if Ni �! Nj is not true for any
j 2 J (x), j 6= i .
If y = A
 x then

y [Ni ] = ∑�
j2R Aij 
 x [Nj ] for every i 2 R.

Suppose Ni is �nal in C (x) then

y [Ni ] = Aii 
 x [Ni ]
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Reachability for reducible matrices

If Ni is �nal in C (x) then

y [Ni ] = Aii 
 x [Ni ]

[If B 6= ε is irreducible and v 6= ε then B 
 v 6= ε]
) y [Ni ] 6= ε (since Aii 6= ε)
Proposition: Final classes in C (x) and C (y) coincide
Corollary: If A
 z = λ
 z and z = Ak 
 x for some k then the
�nal classes in C (x) and C (z) coincide and

z [Ni ] = Akii 
 x [Ni ]

for any �nal class Ni in C (x)
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Reachability for reducible matrices

A
 z = λ
 z blockwise:

∑�
j2R Aij 
 z [Nj ] = λ
 z [Ni ] for every i 2 R

If Ni is �nal in C (z) :

Aii 
 z [Ni ] = λ
 z [Ni ]

) If Ni �nal in C (x) then x [Ni ] 2 attr (Aii )
This is can be checked in O

�
n3 log n

�
time

We may assume that a periodic regime for all �nal classes has been
reached
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Reachability for reducible matrices

If A
 z = λ
 z , and z [Ni ] 6= ε then
z [Ni ] is �nite,
λ (Aii ) � λ and
Ni �! Nj , where λ (Ajj ) = λ
in particular, λ (Aii ) = λ if Ni is �nal in C (z)
We have already seen that x [Ni ] 6= ε =) z [Ni ] 6= ε if z = Ak 
 x
so a necessary reachability condition is:

x [Ni ] 6= ε =) λ (Aii ) � λ
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Reachability for reducible matrices

From now on assume that a periodic regime for all �nal classes has
been reached (z = x)
We may also assume that λ = 0
) for any �nal class x [Ni ] :

Aii 
 x [Ni ] = x [Ni ]
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Reachability for reducible matrices

Checking the non-�nal classes - explanation for r = 2 :

A =
�
A11 ε
A21 A22

�
, x =

�
x1
x2

�

A11 
 x1 = x1
Without loss of generality: A21 6= ε and x1 6= ε
) λ (A22) � 0
Denote x0 = x and

xk = Ak 
 x0 =
�
xk1
xk2

�
Since xk1 = x

0
1 for every k we only need to check whether x

k
2 is

stationary (
 omitted):

xk2 = A21x
0
1 � A22xk�12 = ...
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Reachability for reducible matrices

Since xk1 = x
0
1 for every k we only need to check whether x

k
2 is

stationary:

xk2 = A21x01 � A22xk�12

= A21x01 � A22
�
A21x01 � A22xk�22

�
...

=
�
I � ...� Ak�122

�
A21x01 � Ak22x02

= A�22A21x
0
1 � Ak22x02

v = A�22A21x
0
1 ... constant �nite vector for k � n� 1

If λ (A22) < 0 then Ak22x
0
2 �! �∞ and so xk2 = A

�
22A21x

0
1 for k

large
If λ (A22) = 0 :
A22 is irreducible and de�nite
periodic regime of A22 can be found in polynomial time
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Reachability for reducible matrices

For k � T (A11) (unknown):

Ak 
 x =
�

Ak11 ε
A�22A21 Ak22

�

 x

Ak+111 
 x1 =Ak11 
 x1

Ak11 can be found in polynomial time (for any k � T (A11))
Ak+σ
22 
 x2 = Ak22 
 x2 where σ = σ (A22) , k � T (A22)
Ak22 can be found in polynomial time (for any k � T (A22))
) Ak+s 
 x = Ak 
 x for some s � σ and
k � max (T (A11),T (A22), n)
Ak can be found in polynomial time (for any k large)
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Reachability for reducible matrices

Lemma: If there exist natural numbers s and T such that

At+s 
 x = At 
 x for every t � T then

Ar+1 
 x = Ar 
 x

for a natural number r � T if and only if

Ak+1 
 x = Ak 
 x

for every natural number k � T .
Checking reachability thus reduces to checking

Ak+1 
 x = Ak 
 x

for k � max (T (A11),T (A22), n).
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The role of trivial blocks

ε ε ε ε

0 ε ε ε

ε 0 ε ε

ε ε 0 ε

:

0
0
0
0

�!

ε
0
0
0

�!

ε
ε
0
0

�!

ε
ε
ε
0

�!

ε
ε
ε
ε

�! ...

0 ε ε ε

0 ε ε ε

ε 0 ε ε

ε ε 0 ε

:

0
ε
ε
ε

�!

0
0
ε
ε

�!

0
0
0
ε

�!

0
0
0
0

�!

0
0
0
0

�! ...
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Reachability for reducible matrices

Proposition: Let z (k ) = Ak 
 x , k = 1, 2, ... . If Ni is trivial (that

is Aii = (ε)) then
either z (k ) [Ni ] = ε for all k � 2n
or z (k ) [Ni ] 6= ε for all k � 2n
Proposition: For every k � 2n every i the class z (k+1) [Ni ] is �nal
if and only if z (k ) [Ni ] is �nal.
Corollary: For solving REACHABILITY it is su¢ cient to �rst
move x �! A2n 
 x
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Strongly and weakly stable matrices

V (A) � attr (A) � R
n � fεg

Two extremes:
attr (A) = R

n � fεg ... A strongly stable (robust)
attr (A) = V (A) ... A weakly stable
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Strong stability (robustness)

If A is irreducible and primitive then by the Cyclicity Theorem:
Ak+1 = λ(A)
 Ak for k large
Ak+1 
 x = λ(A)
 Ak 
 x for k large and any x 2 R

n

A irreducible: A is robust () A is primitive
Robustness criterion for reducible matrices (PB & S.Gaubert
& RACG 2009):
A with FNF classes N1, ...Nr and no ε column is robust if and only
if
All nontrivial classes are primitive and spectral
(8i , j) If Ni ,Nj are non-trivial, Ni 9 Nj and Nj 9 Ni then

λ(Aii ) = λ(Ajj )
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Strong stability (robustness)

Reduced digraph of a robust matrix with λ1 < λ2 < λ3 < λ4 :
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Weakly stable matrices

A weakly stable: attr (A) = V (A)
Let A be irreducible
V (A) = fx 2 R

n
;A
 x = λ (A)
 x , x 6= εg ... eigenvectors

V� (A) = fx 2 R
n
;A
 x � λ (A)
 x , x 6= εg ... subeigenvectors

V � (A) = fx 2 R
n
;A
 x � λ (A)
 x , x 6= εg ...

supereigenvectors
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Weakly stable matrices

V (A) � V�(A) � Attr (A)
V (A) � V �(A) � Attr (A)

Attr

V*(A)

V(A)

V*(A)

A weakly stable =) V (A) = V �(A) = V�(A) = Attr (A)
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Weakly stable matrices

Let A be irreducible.
A is weakly stable () CA is a Hamilton cycle in DA.0BBBB@

�
�
�
�

�

1CCCCA
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Weakly stable matrices

A is weakly stable if and only if every spectral class of A is initial
and weakly stable
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Visualisation

A = (aij ) 2 R
n�n

is called visualised if
aij � 0 for all i , j
aij = 0 if (i , j) 2 Ec
If λ (A) > ε and x is a �nite eigenvector then B = X�1 
 Aλ 
 X
is visualised, where X = diag (x1, .., xn)
There is a bijection between V (A) and V (B) and
λ (B) = λ (Aλ) = 0
) There is no loss of generality to assume that A is visualised and
de�nite.
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P. Butkovic: Max-linear Systems: Theory and Algorithms (Springer
Monographs in Mathematics, Springer-Verlag 2010)
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For A irreducible and de�nite:

Ar+σ = Ar for all r � T (A)

Corollary 1: Let A be irreducible and de�nite and r � T (A).
Then Ar 
 x = Ar+p 
 x is equivalent to its critical subsystem for
r � n2.
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Example: If

A =

0@ -2 1 -3
3 0 3
5 2 1

1A
then

λ(A) = max f�2, 0, 1, 2, 1, 5/2, 3, 2/3g = 3
σ = (1, 2, 3) is critical
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Eigenproblem: The principal eigenvalue and eigenvectors

A =

0BBBBBB@

7 9 5 5 3 7
7 5 2 7 0 4
8 0 3 3 8 0
7 2 5 7 9 5
4 2 6 6 8 8
3 0 5 7 1 2

1CCCCCCA , λ (A) = 8
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Eigenproblem: The principal eigenvalue and eigenvectors

1 2

36

5 4

Critical cycles: (1, 2, 1), (5, 5), (4, 5, 6, 4)
Node sets of all strongly connected components:
f1, 2g , f3g , f4, 5, 6g
Three strongly connected components, one of them trivial
Nc = f1, 2, 4, 5, 6g
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An example

0BBBB@
�2 2 2
�5 �3 �2

ε ε 3
�3 �3 2
1 4 ε

1CCCCA

0@ x1
x2
x3

1A =

0BBBB@
3

�2
1
0
5

1CCCCA
0BBBB@
-5 -1 -1
-3 -1 0
ε ε 2
-3 -3 2
-4 -1 ε

1CCCCA

0@ x1
x2
x3

1A =

0BBBB@
0
0
0
0
0

1CCCCA
M1 = f2, 4g ,M2 = f1, 2, 5g ,M3 = f3, 4g
x = (3, 1,�2)T is a solution since Sj=1,2,3Mj = M
M2 [M3 = M hence the solution set isn

(x1, x2, x3)
T 2 R

3
; x1 � 3, x2 = 1, x3 = �2

o
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0BBBBBB@

7 9 5 5 3 7
7 5 2 7 0 4
8 0 3 3 8 0
7 2 5 7 9 5
4 2 6 6 8 8
3 0 5 7 1 2

1CCCCCCA ,
| {z }

A

λ (A) = 8
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0BBBBBB@

7 9 5 5 3 7
7 5 2 7 0 4
8 0 3 3 8 0
7 2 5 7 9 5
4 2 6 6 8 8
3 0 5 7 1 2

1CCCCCCA
| {z }

A

�8�!

0BBBBBB@

-1 1 -3 -3 -5 -1
-1 -3 -6 -1 -8 -4
0 -8 -5 -5 0 -8
-1 -6 -3 -1 1 -3
-4 -6 -2 -2 0 0
-5 -8 -5 -1 -7 -6

1CCCCCCA
| {z }

Aλ
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0BBBBBB@

7 9 5 5 3 7
7 5 2 7 0 4
8 0 3 3 8 0
7 2 5 7 9 5
4 2 6 6 8 8
3 0 5 7 1 2

1CCCCCCA
| {z }

A

�8�!

0BBBBBB@

-1 1 -3 -3 -5 -1
-1 -3 -6 -1 -8 -4
0 -8 -5 -5 0 -8
-1 -6 -3 -1 1 -3
-4 -6 -2 -2 0 0
-5 -8 -5 -1 -7 -6

1CCCCCCA
| {z }

Aλ0BBBBBB@

0 1 -1 0 1 1
-1 0 2 -1 0 0
0 1 -1 0 1 1
-1 0 -1 0 1 1
-2 -1 -2 -1 0 0
-2 -1 -2 -1 0 0

1CCCCCCA
| {z }

A+λ
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0BBBBBB@

7 9 5 5 3 7
7 5 2 7 0 4
8 0 3 3 8 0
7 2 5 7 9 5
4 2 6 6 8 8
3 0 5 7 1 2

1CCCCCCA
| {z }

A

�8�!

0BBBBBB@

-1 1 -3 -3 -5 -1
-1 -3 -6 -1 -8 -4
0 -8 -5 -5 0 -8
-1 -6 -3 -1 1 -3
-4 -6 -2 -2 0 0
-5 -8 -5 -1 -7 -6

1CCCCCCA
| {z }

Aλ0BBBBBB@

0 1 -1 0 1 1
-1 0 2 -1 0 0
0 1 -1 0 1 1
-1 0 -1 0 1 1
-2 -1 -2 -1 0 0
-2 -1 -2 -1 0 0

1CCCCCCA
| {z }

A+λ

�!

0BBBBBB@

0 . . 0 . .
-1 . . -1 . .
0 . . 0 . .
-1 . . 0 . .
-2 . . -1 . .
-2 . . -1 . .

1CCCCCCA
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Eigenproblem: The principal eigenvalue and eigenvectors

A =

0BB@
0 3
1 �1

2
1

1CCA , blank = ε

λ(A) = 2
Nc = f1, 2, 3g
1 s 2
dim (A) = 2

A+λ =

0BB@
0 1

�1 0
0
�1

1CCA
A basis of the principal eigenspace is e.g.n
g2 = (1, 0, ε, ε)

T , g3 = (ε, ε, 0, ε)
T
o
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Finding all eigenvalues

A =

0BBBBBB@

0 3
5 1

4
0 3 1

-1 2
1 5

1CCCCCCA (blank = ε)

λ(A11) = 4,λ(A22) = 4,λ(A33) = 3,λ(A44) = 5, r = 4
λ(A) = 5
Λ(A) = f4, 5g
N1,N4 are spectral (N2 is not)
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Principal eigenspace

λ (A) > ε
Aλ = (λ (A))

�1 
 A
A+ = A� A2 � ... �An�1 � An

A �! Aλ
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Principal eigenspace

λ (A) > ε
Aλ = (λ (A))

�1 
 A
A+ = A� A2 � ... �An�1 � An

A �! Aλ �! (Aλ)
+
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Principal eigenspace

λ (A) > ε
Aλ = (λ (A))

�1 
 A
A+ = A� A2 � ... �An�1 � An

A �! Aλ �! (Aλ)
+ (brie�y A+λ )
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Principal eigenspace

If λ(A) > ε then every column of A+λ with zero diagonal entry is
an eigenvector of A with corresponding eigenvalue λ(A) (principal
eigenvector)
An essentially unique basis of V (A,λ(A)) (the principal
eigenspace) can be obtained by taking exactly one principal
eigenvector of A for each equivalence class in (Nc ,�)
If A+λ = (g1, ..., gn) then i � j if and only if gi = α
 gj , α 2 R

If A is irreducible then V (A) = V (A,λ(A)) and V (A) � Rn
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