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Part | - Tropical linear algebra basics
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Max-plus and variants

R = RU {—oc0}

a® b= max(a, b)

a®@b=a+b>b

(ﬁ,@,@) ... idempotent, commutative semiring
Notation:

€ for —oco

a~ ! stands for —a
aRaRaR..Ra= a

k—times
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From classical to tropical...

V.Maslov+V.Kolokoltsov (1980s): "dequantisation":

1/k
(ak + bk> — max(a, b) for k — o0
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Max-plus and variants

G =(G,®, <) ... linearly ordered commutative group
a® b=max(a,b)

e < aforallac G (adjoined)

(GU{e},®,®) ... commutative idempotent semiring
go (R, —|— <) .. max-plus

) . min-plus (x — —x)

) ... max-times (x — €*)
)

I/\ |/\|\/|

= (R,
(IR
= (2,

In what follows: Gg
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Extension to matrices and vectors

A@B:(a/j@b,’j)
A® B = (L ak ® byj)
a®A= (uc®a,-j)

d
€
diag(di, ..., dn) =
€
dn
| = diag(0, ...,0)
ARARA® .. ®A= Ak
k—times
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Some basic properties

Compared to (R, +,.) we are

losing invertibility

gaining idempotency

A1 exists <= A is a generalised permutation matrix
Idempotency: ada=a

(a®b) =ak @bk, if k>0
(A@B)k#Ak@Bk

oA =10AGA G ... @ A

Another useful property: ALK B=ARC<B®C
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Tropical linear algebra: non-linear becomes "linear"
C)—
a

X3 = max (Xl + ai, xo + 32)

= aa®x1PH®x = (a,a)® < i; >
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Basic problems

One-sided max-linear systems:

ARx=0>b

AR x<b

AR x=A®x (x ... eigenvector if x # ¢€)
AR x < A®x (x ... subeigenvector if x # ¢)
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Basic problems

Two-sided max-linear systems:

AR x =B®x

ARx=B®y

ARxPc=Bxdd

A®x =A® B® x (generalized eigenproblem)
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Basic problems

Max-linear programming:
fT ®x — min (max)
s.t.

ARx=Db

fT ®x — min (max)

s.t.
ARxDc=BRxxDd
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Basic problems

Periodicity of matrix powers:

A A2 A3

Periodicity of matrix orbits:

ARx, A2 x, A3Q x, ...

Tropical polynomials, characteristic polynomial and
Cayley-Hamilton

Linear independence, regularity, rank,...
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Tools for working with tropical matrices

The conjugate and dual operators
Maximum cycle mean
Transitive closures

Permanent (tropical)
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Dual operators and conjugation

Dual operators:

a® b = min(a,b)
a®@'b = a+b
—00® 400 = 4o0o=40c0® —o0

The conjugate:
A* = AT

Theorem (Cuninghame-Green, 1979)
ARx < b+ x<A*®'b

Residuation, Galois connection, ...
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Dual operators and conjugation

ARx < b= x<A*¥ Qb

Corollary 1: Forany Ac R""" and b € R” the system
A® x < b has a solution and x af A# @' b is the greatest solution.

=mXn

Corollary 2: For any A,B € R
A (A*@'B) <B

and [thus also]
A (AF @A) <A
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Dual operators and conjugation

Remark: For every A actually
As (A @ A) = A
and more generally:

A# AA# A AT AAF
AAFEAAT  AAF A

PR R.0x
RR.0 ®

@#®@@&”®(Qﬁ@A)@A)®m®m#=A#
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Dual operators and conjugation

X =A#* Q' b ... the principal solution to A® x < b
What about A® x = b?
Suppose A® x = b for some x
SLARXx <D
Sox <X
SLDARX < ARX
Sh=Ax<ARx<b
SAQX=0b
Corollary 3: A® x = b has a solution if and only if AQ X = b
that is
Aw (A* @' b) = b
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Dual operators and conjugation
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Dual operators and conjugation

Combinatorial method (Cuninghame-Green, 1960): A® x = b
if and only if x <X and

U M= (1. m}

Xj=Xj
Corollary: Finding a solution to A® x = b with the least number

of components equal to X = A# ®’ b is an NP-complete problem.

Peter Butkovic Manchester 19/20 January 2012



Maximum cycle mean

nXx

Given A = (a;) € R""", the mean of a cycle o = (i, ..., ik, ir):

u(o, A) = A, T a/213k+ ot a

Maximum cycle mean of Ac R"""
A(A) = max {u(o, A); o cycle}
u(o, A) = A(A) ... o is critical

Many algorithms for the computation of A (A) (Karp's is O (n?))
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Maximum cycle mean is the principal eigenvalue

For any A, A(A) is

an eigenvalue of A

the greatest (principal) eigenvalue of A

the only eigenvalue of A whose corresponding eigenvectors may be
finite

the unique eigenvalue if A is irreducible (in this case all
eigenvectors are finite)

Every eigenvalue of A is the maximum cycle mean of some
principal submatrix
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Maximum cycle mean - definite matrices

A is (max-)definite if A(A) =0

AMa®A) =a®A(A)

In particular: A ((/\ (A) ®A) = (A(A)'®A(A) =0
A— Ay = (A(A)) ' ®A (transition to a definite matrix)
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"Passage Theorem" (Friedland 1986)

A ... an irreducible nonnegative matrix
p (A) ... the Perron root of A
{AK}7_, ... sequence of Hadamard (Schur) powers

Dequantisation: (p (Ak))l/k — A(A) (in max-times) and

A(A) <p(A) < nA(A)
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Associated graph

A= (a;) e R"" — Ds= (N, E, (a))

where E = {(i,j); aj > —oo}
A is irreducible iff Dy strongly connected
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Critical graph

u(o, A) = A(A) ... o is critical
Ca = (N, E¢.) where E. is the set of arcs of all critical cycles
N. ... the set of nodes of critical cycles

i ~ j (equivalent nodes) ... i and j belong to the same critical
cycle
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Transitive closures

For Ac R"" define:

AT = AD AP A D ... (metric matrix/weak transitive closure)
A =1 D ADA> B A3 D ... (Kleene star/strong transitive closure)
If A is definite:

At = AGA . 0AT 1A

AA=1PADA2D ... A1
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Eigenspaces and subeigenspaces

V(A A) :{xeﬁ:;A@)x:)\@x},)\eﬁi
VF(A L) = {x e R A@x < A@x},A€R
V(A) ... the set of all eigenvectors

A(A) ... the set of all eigenvalues

Tropical subspace is V C R" if for x,y € V and a € R :
x@yeVand

xn@x eV

V (A, A) and V* (A M) are (tropical) subspaces

Bases? Dimension?
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Finitely generated tropical subspaces - bases and dimension

max-combination of vy, ..., v

For M € R™"" we denote span (M) f {M@z;z € ﬁ"}

span (M) is a (finitely generated) subspace

Columns of M are called generators of span (M)

A basis of a finitely generated subspace is any set of generators
such that none of them is a max-combination of the others
Dimension of a finitely generated subspace is the size of (any of)
its basis
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Eigenspaces and subeigenspaces - bases and dimension

Assume A € R""", A (A) > ¢ and recall A, = (A (A)) '® A
ne ... number of critical nodes, that is |N.|

Nee ... number of non-trivial components of Cy4

ng =n—nc

Denote (A))" by Af, (A))" by A%

(AY), = submatrix formed by the columns with critical indices
Note: A3 is just | @ A)T

Theorem:

V(A A(A)) = span ((A}),) and dimV (A, A (A)) = nec

V* (A A (A)) = span (A}) and dimV (A, A (A)) = nec + no
Essentially unique bases of V (A, A (A)) and V* (A, A (A)) can be
found in O (n®) time
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Finite subeigenvectors

Finite subeigenvectors may be important for applications:
V*(AAM) ={xeR"Ax<A®x},A€R

Theorem: Let A = (a;) € R™" A #¢e A €R. Then

V¥ (A A) # @ if and only if A > A (A) and A > e.

If A > A(A) and A > ¢ then

V(A A) = {()\_1®A)*®u;u€]R"}.
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An application: Bounded mixed-integer solution to a

system of dual inequalities

BMISDI: Find, or prove that it does not exist, a vector
x = (x1,....xn) " satisfying:

X,'—Xij,'j, (i,jE/V)
uzxpzlh,  (EN)
x;j integer, (jeJ)

where u = (u1,...,up)", 1= (h,...1,)" € R" and
JC N=/{1,...,n} are given.
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An application: Bounded mixed-integer solution to a

system of dual inequalities

The system of dual inequalities (SDI)
xi—xj > bj (i,j€N)
is equivalent to:

max (bj +x;) < x; (i € N)
JEN

in tropical notation:

& .
Y enbi®x < x (i€ N)
or in the compact form:

B®x <x
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An application: Bounded mixed-integer solution to a

system of dual inequalities

.. we are looking for finite subeigenvectors of B corresponding to
A=0

. A(B) < 0is a necessary condition for the solvability of SDI

.". the set of all finite solutions to B® x < x is

V¥ (B,0) = {B*®zz € R"}

Peter Butkovic Manchester 19/20 January 2012



An application: Bounded mixed-integer solution to a

system of dual inequalities

(Bx <xand x <u) <
= x=B*"®@z<uzeR"
—= x=B"®z z< (B @' u

= x<B"® <(B*)# ®' u)

S I<B*® ((B*)# ®' u) is necessary and sufficient for the
existence of a solution to SDI satisfying /| < x < u
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An application: Bounded mixed-integer solution to a

system of dual inequalities

Algorithm BMISDI

Input: Be R"™", u,/ € R" and J C N.

Output: x satisfying BMISDI conditions or an indication that no
such vector exists.

X:i=u

xj 1= |xj] for j € J

z = (B*)# R x, x=B*®Qz

If / i x then stop (no solution)

If I < x and x; € Z for j € J then stop else go to 2.

BMISDI requires O(n® + n?L) operations of +, max, min, < and

|-], where
L:Zjej(uj_lj)
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Finding all eigenvalues: the reduced graph

A = B means: A can be obtained from B by a simultaneous
permutation of rows and columns

If A= B then

A(A) = A(B) and

there is a bijection between V (A, A) and V(B, A) for any A
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Finding all eigenvalues: the reduced graph

Frobenius Normal Form (FNF):

A1
Ay Ax €
A= : '
Anr A o o Ag

A11, ..., A, irreducible

The corresponding partition of N : Ny, ..., N, ... classes (of A)
Reduced digraph Red(A) (partially ordered set):

nodes: 1,...,r

arcs: (i,j) : (3k € N;)(3C € Nj)age > ¢

N; — N; or i — j means: there is a directed path from i to j in
Red(A)
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Finding all eigenvalues: Reduced digraph

A1 € € € e €
* Ay & € € €
* * Asz £ 3 €
* € e Ap € € (x#9)
€ €
€ €
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Finding all eigenvalues: Spectral Theorem

A in an FNF:
A1l
Ay A €
; ' ., A11, ..., A, irreducible
Al An oo e A

Spectral Theorem (Gaubert, Bapat, 1992):
A(A) = {A(Ai); A(Ai) = A(Ay) if j — i}

Corollary: Every matrix has at most n eigenvalues.

i is called spectral if A(Aji) > A(Aj;) whenever j — |

All real numbers A > min A(A) are "subeigenvalues", that is
AR x < A® x for some x # ¢.
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Part Il. Reachability of eigenspaces by matrix orbits
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MULTI-PROCESSOR INTERACTIVE SYSTEM (MPIS)

Processors P, ..., P, work interactively and in stages
x;(r) ... starting time of the r" stage on processor P;
(i=1,..., mr=201..)

ajj ... time P; needs to prepare the component for P;
xi(r+1) = max(xa(r) + ai, ..., xa(r) + ain)
(i=1,..., nr=0,1..)

xi(r+1) =Y, ax @ x(r) ce,mr=0,1,..)
x(r+1)=A@x(r) (r=

A x(0) — x(1) — x(2) —

(i=
01,...)
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MPIS: STEADY REGIME

Given x(0), will the MPIS reach a steady regime (that is, will it
move forward in regular steps)?
Equivalently, is there a A and an ry such that

x(r+1)=A®x(r) (r>n)?

x(r+1)=A®x(r) (r=0,1,...)

Steady regime is reached if and only if for some A and r, x(r) is a

solution to
ARXx=AR®x
Since
x(NN=A@x(r—1)=A@x(r—2)=... =A ®x(0),

a steady regime is reached if and only if A" ® x(0) “hits” an
eigenvector of A for some r.
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Reachability

Reachability of an eigenspace: Given A € R"" and an x € R,
x # €, is there a k such that A¥ ® x is an eigenvector of A?

Various applications - a recent one:

Brackley, Broomhead, Romano, Thiel: Max-Plus Model of
Ribosome Dynamics During mRNA Translation, 2011
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Attraction set

Matrix orbit with starting vector x :
ARx, A2x, .., Ak®x, ...
Attraction set:

Attr (A) = {x; (TK) A @ x € V(A)}

V(A) C attr (A)

Peter Butkovic Manchester 19/20 January 2012



Reachability

Attr

Pl
>
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Cyclicity of a matrix

Cyclicity (index of imprimitivity) of a strongly connected digraph
= g.c.d. of the lengths of its cycles

Cyclicity of a digraph = l.c.m. of cyclicities of its SCC

Let Ac R""

Ca ... critical digraph of A

Cyclicity of a matrix A: o (A) = cyclicity of Cx

Ais primitive if 0 (A) =1

Peter Butkovic Manchester 19/20 January 2012



Cyclicity Theorem

Cyclicity Theorem (Cohen et al 1985)

For every irreducible matrix A € R"" the cyclicity of A is the
period of A, that is, the smallest natural number p for which there
is an integer T(A) such that

Ar+P — (A(A))P®Ar

for every r > T(A)
T(A) ... transient of A
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Cyclicity Theorem

For A irreducible:
AT = (A (A))‘7 A, r>T(A)

For any A (irreducible or not): A (A¥) = (A (A))* for every integer
k>0
.. For A irreducible:

AR (A @x)=A(A)® (A ®x), r>T(A)

Corollary

If Ais irreducible then (Vx # ¢) A" ® x € V(A®) for some r and
s <o (A)

Reachability asks about s =1
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Attr(A)

Attr(A?)

Attr(A%) = R"
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Reachability for irreducible matrices

Theorem (Nachtigall, 1997): Let A€ R""" be irreducible.
Critical rows and columns of A" are periodic for r > n?, that is for
all (i,j) € (Nc (A) x N)U (N x Nc(A)) we have:

a7 = (A (A) ®a)

Theorem (Sergeev, 2009): Let A € R""" be irreducible and
definite. Then for every r > T(A) and k =1,..., n coefficients
a; € R (i € N:(A)) such that
®
A = ZIGNC(A) a; @ Aj.

can be found in O (n3) time.
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Reachability for irreducible matrices

Corollary: If A is irreducible and definite then A" for any
r > T(A) can be found in O (n®logn) time (but not r)

.. Reachability of V(A®) for any s for A irreducible and definite,
and any x can be checked in O (n3 log n) time
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Reachability for reducible matrices

REACHABILITY: Given A € ﬁnxn, its eigenvalue A and x € ﬁn,
is there a k such that z = AX ® x is an eigenvector with
eigenvalue A? Thatis ARz=AR z.

Now A reducible - in a Frobenijus Normal Form:

A1
A Ax €
: ' , A11, ..., Ay irreducible
Ai Ao oo o A,
R=A{1,..r}
Aji irreducible may be 1 x 1 matrix (¢) ... "trivial" - exclude at
first
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Reachability for reducible matrices

For any x € R" denote

J(x) = {ieRix[Nj] #e},
C(x) = {ieR(FeJ(x))Ni— N;}.

Ni,i € J(x) is final in C (x) if N; — N; is not true for any
JeJ(x). j#i
If y = A® x then
@ .
y [N = ZjeRA’j ® x [Nj] for every i € R.
Suppose N; is final in C (x) then

y [Ni] = Aii @ x [Nj]
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Reachability for reducible matrices

If Nj is final in C (x) then
y [Ni] = Air @ x[N]]
[If B # ¢ is irreducible and v # € then B® v # ¢]
oy [INi] # € (since Aji # ¢€)
Proposition: Final classes in C (x) and C (y) coincide

Corollary: If A® z=A® z and z = Ak ® x for some k then the
final classes in C (x) and C (z) coincide and

z[Ni] = A% @ x [Nj]

for any final class N; in C (x)
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Reachability for reducible matrices

A®z = A® z blockwise:
ZjeeR Aj®z[Nj] =A®z[N;] for every i € R
If Njis final in C(z) :
Ai @z [N;] = A ® z[Nj]
o Af N final in C (x) then x [N;] € attr (Aji)
This is can be checked in O (n3 log n) time

We may assume that a periodic regime for all final classes has been
reached
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Reachability for reducible matrices

If A z=A®z, and z[N;] # ¢ then

z [N;] is finite,

A (A,‘,’) S A and

N; — N;, where A (Aj;) = A

in particular, A (A;) = A if N; is final in C (z
We have already seen that x [N;] # ¢ = z |
so a necessary reachability condition is:

)
N;| # ¢ if z= Ak ® x

X[N/]#SjA(A,'/)S)\
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Reachability for reducible matrices

From now on assume that a periodic regime for all final classes has
been reached (z = x)

We may also assume that A =0

.. for any final class x [N;] :

Aii @ x [N;] = x [N;]
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Reachability for reducible matrices

Checking the non-final classes - explanation for r = 2 :
Al ¢ X1
A - , X =
( A1 Ax > ( X2
Al ®x1 = x

Without loss of generality: Ay; # € and x; # ¢
SA (AQQ) <0
Denote x? = x and

k
xk:Ak®xO:<X%(>
2

Since x¥ = x? for every k we only need to check whether x& is
1 1 Yy 2

stationary (® omitted):
X2k = Azle @Azgxzk_l = ..
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Reachability for reducible matrices

Since xlk = x? for every k we only need to check whether sz is
stationary:
X2k = A21Xi) ) A22X2k_1

_ 0 0 k—2

= Aoux; ©Ax» <A21X1 @ Axnx; )

= (’ ©.. 0 A§51) Anix] ® Agyxg

= AbAnxd & A5
v = §2A21x? ... constant finite vector for k > n—1
If A (Ax) < 0 then A5, xY — —oco and so x§ = A3, A x? for k
large
If A (Agz) =0:

Aoy is irreducible and definite
periodic regime of Ay can be found in polynomial time
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Reachability for reducible matrices

For k > T(A11) (unknown):

Ak €
Ak Rx = < . 11 > R x
A5A AS,

AT ©x =Af @ x

Ak, can be found in polynomial time (for any k > T (A11))
ALTT® xy = Ak, @ xo where 0 = 0 (Axn) , k > T(A»)
Ak, can be found in polynomial time (for any k > T (Az))
LA @ x = AR ® x for some s < ¢ and

k 2 max(T(All), T(A22), n)

AK can be found in polynomial time (for any k large)
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Reachability for reducible matrices

Lemma: If there exist natural numbers s and T such that
AT @ x = At ® x for every t > T then

ATl @x=A" ®x
for a natural number r > T if and only if

Ak+1 Rx = Ak ® X

for every natural number k > T.
Checking reachability thus reduces to checking

Ak+1®X:Ak®X

for k > max (T (A11), T(Ax),n).
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Reachability for reducible matrices

Proposition: Let z(k) = Ak @ x, k = 1,2, ... . If N; is trivial (that

is Aii = (¢)) then

either z(K) [N;] = ¢ for all k > 2n

or z(K) [N;] # e for all k > 2n

Proposition: For every k > 2n every i the class z(K*1) [N;] is final
if and only if z(K) [N;] is final.

Corollary: For solving REACHABILITY it is sufficient to first

move x — A2" ® x
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Strongly and weakly stable matrices

V(A) C attr (A) CR" — {e}
Two extremes
attr (A) =R" — {s} . A strongly stable (robust)

attr (A) = V(A) A weakly stable
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Strong stability (robustness)

If Ais irreducible and primitive then by the Cyclicity Theorem:
AKFL = A (A) ® Ak for k large

AL @ x = A(A) ® AF @ x for k large and any x € R”

A irreducible: A is robust <= A is primitive

Robustness criterion for reducible matrices (PB & S.Gaubert
& RACG 2009):

A with FNF classes N, ...N, and no € column is robust if and only
if

All nontrivial classes are primitive and spectral

(Vi,j) If Ni, N; are non-trivial, N; - N; and N; - N; then

A(Ai) = MAj)
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Strong stability (robustness)

Reduced digraph of a robust matrix with A; < Ay < A3 < Ay
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Weakly stable matrices

A weakly stable: attr (A) = V(A)
Let A be irreducible

VA) = {x e R"; A®x =A(A)@x,x # ¢} ... eigenvectors
Vi(A) = {x e R";A®@ x < A(A) @ x,x # €} ... subeigenvectors
V¥ (A) = {x eER"; A@x > A (A) @ x,x # ¢} ...
supereigenvectors
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Weakly stable matrices

V(A) C V,(A) C Attr (A)
V(A) C V*(A) C Attr (A)

Attr

A weakly stable = V/(A) = V*(A) = Vi (A) = Attr (A)
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Weakly stable matrices

Let A be irreducible.
A is weakly stable <= C4 is a Hamilton cycle in Dj.
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Weakly stable matrices

A is weakly stable if and only if every spectral class of A is initial
and weakly stable
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Visualisation

A= (a;) € R"" is called visualised if

aj <O0foralli,j

a; = 0if (i,j) € E.

If A(A) > e and x is a finite eigenvector then B = X1 ® Ay ® X
is visualised, where X = diag (x1, .., Xn)

There is a bijection between V(A) and V/(B) and
A(B)=A(Ay) =0

.. There is no loss of generality to assume that A is visualised and
definite.
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P. Butkovic: Max-linear Systems: Theory and Algorithms (Springer
Monographs in Mathematics, Springer-Verlag 2010)
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For A irreducible and definite:
AT = A" for all r > T(A)

Corollary 1: Let A be irreducible and definite and r > T(A).
Then A" ® x = A"™P @ x is equivalent to its critical subsystem for
r> n?.
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Example: If

2[1]3
A= 3 0|3
(5]2 1
then
AMA) = max{-2,0,1,2,1,5/2,3,2/3} =3
o = (1,2,3) is critica
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Eigenproblem: The principal eigenvalue and eigenvectors

7
8
7
4
3

OI\)I\)OU‘IE
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Eigenproblem: The principal eigenvalue and eigenvectors

@\/

Critical cycles: (1,2,1), (5,5), (4,5,6,4)
Node sets of all strongly connected components.

{1.2},{3},{4,5,6}

Three strongly connected components, one of them trivial
N.={1,2,4,5,6}
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An example

-2 2 2 3
-5 -3 =2 X1 —2
€ 3 3 1®] x = 1
-3 -3 2 X3 0
1 4 € 5
5-1-1 0
] 31-1]0 X1 0
e €| 2 X x = 0
] 31-3]2 X3 0
4 |-1] ¢ 0

M, ={2,4} , M, = {1,2,5}, M3 = {3,4}
X =(3,1, —2)T is a solution since |J;_1 03 M; = M
M, U M3 = M hence the solution set is

{(Xl,XQ,X3)T = ﬁ3;xl <3, x=1x3= —2}
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7/9]5 5 3 7
(7[5 2 7 0 4
8 0 3 380
7257'MA):8
4 2 6 6 8[8]
3.0 5[7]1 2

A
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4
-8

-1
-5

-8
0
-1 6 -3 -1[1]-3

-6
-5

Ax
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-1[1]-3 -3 -5 -1

7/9]5 5 3 7

Ax
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Ap

0
-1
0
0
-1

0
-1
0
-1
-2
-2
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Eigenproblem: The principal eigenvalue and eigenvectors

0 3
A= 1 -1 5 , blank = ¢
1
AMA) =2
N. ={1,2,3}
1~2
dim (A) =2
0 1
-1 0
Al = 0
-1

A basis of the principal eigenspace is e.g.
{g2 = (1,0,e,6) g3 = (s,e,O,s)T}
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Finding all eigenvalues

0 3
5 1
A= g 31 (blank =€)
-1 2
N
)\(All) = 4,}\(/422) = 4,)\(A33) = 3, )\(A44) = 5, r==4
AA) =5
A(A) = {45}

N1, Ny are spectral (N, is not)
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Principal eigenspace

A(A) > e
A= (A(A) @A
AT= APpA2d.. A" 1g A"

A— A,
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Principal eigenspace

A(A) > ¢
Av=(A(A)T®A
AT= ApA2q .. A" 1gAn

A— Ay — (AA>+
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Principal eigenspace

A(A) > ¢
Av=(A(A) T ©A
AT= ApA2@.. A" 1gAn

A— Ay — (A))T (briefly AT)
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Principal eigenspace

If A(A) > € then every column of AT with zero diagonal entry is
an eigenvector of A with corresponding eigenvalue A(A) (principal
eigenvector)

An essentially unique basis of V/(A, A(A)) (the principal
eigenspace) can be obtained by taking exactly one principal
eigenvector of A for each equivalence class in (N, ~)

If AY = (g1,....8n) then i ~ j if and only if g = a ® gj,« € R

If Ais irreducible then V(A) = V(A,A(A)) and V(A) C R"
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