Tropical Linear Algebra (Achievements and Challenges)

Peter Butkovic

Peter Butkovic Manchester 19/20 January 2012

- I. Basics
- II. Reachability of tropical eigenspaces by matrix orbits
- III. Tropical permanent

Credits

R.A.Cuninghame-Green N.N.Vorobyev M.Gondran M.Minoux G.Cohen J.-P.Quadrat V.Maslov V.Kolokoltsov E.Wagneur S.Gaubert M.Akian

• • •

Part I - Tropical linear algebra basics

Peter Butkovic Manchester 19/20 January 2012

< ∃ →

$$\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty\}$$

$$a \oplus b = \max(a, b)$$

$$a \otimes b = a + b$$

$$(\overline{\mathbb{R}}, \oplus, \otimes) \quad \dots \text{ idempotent, commutative semiring}$$
Notation:
$$\varepsilon \text{ for } -\infty$$

$$a^{-1} \text{ stands for } -a$$

$$a \otimes a \otimes a \otimes \dots \otimes a = a^{k}$$

$$\underbrace{a \otimes a \otimes a \otimes \dots \otimes a}_{k-\text{times}} = a^{k}$$

æ

1≣ ▶

-∢ ≣⇒

V.Maslov+V.Kolokoltsov (1980s): "dequantisation":

$$\left(a^{k}+b^{k}\right)^{1/k}\longrightarrow\max\left(a,b
ight)$$
 for $k\longrightarrow\infty$

.≣ →

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

・ロト ・日・・日・・日・・ つくの

・ロト ・日・・日・・日・・ つくの

◆□ → ◆□ → ◆三 → ◆三 → ● ◆ ● ◆ ●

 $\begin{array}{l} \mathcal{G} = (\mathcal{G},\otimes,\leq) \ ... \ \text{linearly ordered commutative group} \\ a \oplus b = \max{(a,b)} \\ \varepsilon \leq a \ \text{for all } a \in \mathcal{G} \ (\text{adjoined}) \\ (\mathcal{G} \cup \{\varepsilon\}, \oplus, \otimes) \ ... \ \text{commutative idempotent semiring} \\ \mathcal{G}_0 = (\mathbb{R}, +, \leq) \ ... \ \text{max-plus} \\ \mathcal{G}_1 = (\mathbb{R}, +, \geq) \ ... \ \text{min-plus} \ (x \longrightarrow -x) \\ \mathcal{G}_2 = (\mathbb{R}^+, \cdot, \leq) \ ... \ \text{max-times} \ (x \longrightarrow e^x) \\ \mathcal{G}_3 = (\mathbb{Z}, +, \leq) \end{array}$

In what follows: \mathcal{G}_0

. . .

э

Compared to $(\mathbb{R}, +, .)$ we are losing invertibility gaining idempotency A^{-1} exists $\iff A$ is a generalised permutation matrix Idempotency: $a \oplus a = a$

$$(a \oplus b)^k = a^k \oplus b^k$$
, if $k \ge 0$
 $(A \oplus B)^k \ne A^k \oplus B^k$
 $(I \oplus A)^k = I \oplus A \oplus A^2 \oplus ... \oplus A^k$
Another useful property: $A \le B \Rightarrow A \otimes C \le B \otimes C$

Tropical linear algebra: non-linear becomes "linear"

$$\begin{array}{rcl} x_3 & = & \max\left(x_1 + a_1, x_2 + a_2\right) \\ & = & a_1 \otimes x_1 \oplus a_2 \otimes x_2 = (a_1, a_2) \otimes \left(\begin{array}{c} x_1 \\ x_2 \end{array}\right) \end{array}$$

- ₹ 🖬 🕨

∃ >

One-sided max-linear systems:

 $\begin{array}{l} A \otimes x = b \\ A \otimes x \leq b \\ A \otimes x = \lambda \otimes x \ (x \ \dots \ eigenvector \ \text{if } x \neq \varepsilon) \\ A \otimes x \leq \lambda \otimes x \ (x \ \dots \ subeigenvector \ \text{if } x \neq \varepsilon) \end{array}$

Two-sided max-linear systems: $A \otimes x = B \otimes x$ $A \otimes x = B \otimes y$ $A \otimes x \oplus c = B \otimes x \oplus d$ $A \otimes x = \lambda \otimes B \otimes x$ (generalized eigenproblem)

< ∃ >

Max-linear programming: $f^T \otimes x \longrightarrow \min(\max)$ s.t. $A \otimes x = b$ $f^T \otimes x \longrightarrow \min(\max)$ s.t. $A \otimes x \oplus c = B \otimes x \oplus d$

< ∃⇒

∃ >

Periodicity of matrix powers: $A, A^2, A^3, ...$ Periodicity of matrix orbits: $A \otimes x, A^2 \otimes x, A^3 \otimes x, ...$ Tropical polynomials, characteristic polynomial and Cayley-Hamilton

Linear independence, regularity, rank,...

The conjugate and dual operators

Maximum cycle mean

Transitive closures

Permanent (tropical)

Dual operators:

$$a \oplus' b = \min(a, b)$$

 $a \otimes' b = a + b$
 $-\infty \otimes' + \infty = +\infty = +\infty \otimes' -\infty$

The conjugate:

$$A^{\#} = -A^{T}$$

Theorem (Cuninghame-Green, 1979)

$$A \otimes x \leq b \Longleftrightarrow x \leq A^{\#} \otimes' b$$

Residuation, Galois connection, ...

$$A \otimes x \leq b \iff x \leq A^{\#} \otimes' b$$

Corollary 1: For any $A \in \overline{\mathbb{R}}^{m \times n}$ and $b \in \overline{\mathbb{R}}^m$ the system $A \otimes x \leq b$ has a solution and $\overline{x} \stackrel{df}{=} A^{\#} \otimes' b$ is the greatest solution. **Corollary 2:** For any $A, B \in \overline{\mathbb{R}}^{m \times n}$

$$A \otimes \left(A^{\#} \otimes' B
ight) \leq B$$

and [thus also]

$$A\otimes \left(A^{\#}\otimes' A\right)\leq A$$

Dual operators and conjugation

Remark: For every *A* actually

$$A \otimes \left(A^{\#} \otimes' A\right) = A$$

and more generally:

$$\left(A^{\#}\otimes A\right)\otimes'\ldots\otimes'\left(\left(A^{\#}\otimes A\right)\otimes' A\right)\otimes\ldots\otimes' A^{\#}=A^{\#}$$

 $\overline{x} = A^{\#} \otimes' b \quad ... \text{ the principal solution to } A \otimes x \leq b$ What about $A \otimes x = b$? Suppose $A \otimes x = b$ for some x $\therefore A \otimes x \leq b$ $\therefore x \leq \overline{x}$ $\therefore A \otimes x \leq A \otimes \overline{x}$ $\therefore b = A \otimes x \leq A \otimes \overline{x} \leq b$ $\therefore A \otimes \overline{x} = b$ Corollary 3: $A \otimes x = b$ has a solution if and only if $A \otimes \overline{x} = b$ that is

$${\sf A}\otimes \left({\sf A}^\#\otimes' b
ight)=b$$

A B M A B M

$$\overline{x} = A^{\#} \otimes' b$$

For $j = 1, ..., n$
$$\overline{x}_{j} = \min_{i} \left(a_{ji}^{\#} + b_{i} \right)$$
$$= \min_{i} \left(-a_{ij} + b_{i} \right)$$
$$= -\max_{i} \left(a_{ij} - b_{i} \right)$$
$$M_{j} = \left\{ k; \overline{x}_{j} = -a_{kj} + b_{k} \right\}, j = 1, ..., n$$

-

Combinatorial method (Cuninghame-Green, 1960): $A \otimes x = b$ if and only if $x \leq \overline{x}$ and

$$\bigcup_{x_j=\overline{x}_j}M_j=\{1,...,m\}$$

Corollary: Finding a solution to $A \otimes x = b$ with the least number

of components equal to $\overline{x} = A^{\#} \otimes' b$ is an *NP*-complete problem.

Given
$$A = (a_{ij}) \in \overline{\mathbb{R}}^{n \times n}$$
, the mean of a cycle $\sigma = (i_1, ..., i_k, i_1)$:

$$\mu(\sigma, A) = \frac{a_{i_1i_2} + a_{i_2i_3} + ... + a_{i_ki_1}}{k}$$

Maximum cycle mean of $A \in \overline{\mathbb{R}}^{n \times n}$:

$$\lambda({\sf A}) = \max \left\{ \mu(\sigma, {\sf A}); \sigma \; {\sf cycle}
ight\}$$

 $\mu(\sigma, A) = \lambda(A) \dots \sigma$ is critical

Many algorithms for the computation of $\lambda(A)$ (Karp's is $O(n^3)$)

For any A, $\lambda(A)$ is an eigenvalue of Athe greatest (*principal*) eigenvalue of Athe only eigenvalue of A whose corresponding eigenvectors **may be finite** the unique eigenvalue if A is irreducible (in this case all eigenvectors **are finite**)

Every eigenvalue of A is the maximum cycle mean of some principal submatrix

$$\begin{array}{l} A \text{ is } (\textit{max-}) \textit{definite if } \lambda(A) = 0 \\ \lambda \left(\alpha \otimes A \right) = \alpha \otimes \lambda \left(A \right) \\ \text{In particular: } \lambda \left(\left(\lambda \left(A \right) \right)^{-1} \otimes A \right) = \left(\lambda \left(A \right) \right)^{-1} \otimes \lambda \left(A \right) = 0 \\ A \longrightarrow A_{\lambda} = \left(\lambda \left(A \right) \right)^{-1} \otimes A \quad \text{(transition to a definite matrix)} \end{array}$$

< ∃ →

æ

A ... an irreducible nonnegative matrix $\rho(A)$... the Perron root of A $\{A^k\}_{k=1}^{\infty}$... sequence of Hadamard (Schur) powers Dequantisation: $(\rho(A^k))^{1/k} \longrightarrow \lambda(A)$ (in max-times) and $\lambda(A) \le \rho(A) \le n\lambda(A)$

$$A = (a_{ij}) \in \overline{\mathbb{R}}^{n \times n} \longrightarrow D_A = (N, E, (a_{ij}))$$

where $E = \{(i, j); a_{ij} > -\infty\}$ A is *irreducible* iff D_A strongly connected $\mu(\sigma, A) = \lambda(A) \dots \sigma$ is critical $C_A = (N, E_c)$ where E_c is the set of arcs of all critical cycles $N_c \dots$ the set of nodes of critical cycles $i \sim j$ (equivalent nodes) $\dots i$ and j belong to the same critical cycle

I ≥ < </p>

For $A \in \overline{\mathbb{R}}^{n \times n}$ define: $A^+ = A \oplus A^2 \oplus A^3 \oplus \dots$ (metric matrix/weak transitive closure) $A^* = I \oplus A \oplus A^2 \oplus A^3 \oplus \dots$ (Kleene star/strong transitive closure) If A is definite: $A^+ = A \oplus A^2 \oplus \dots \oplus A^{n-1} \oplus A^n$

 $A^* = I \oplus A \oplus A^2 \oplus ... \oplus A^{n-1}$

 $\begin{array}{l} V(A,\lambda) = \{x \in \overline{\mathbb{R}}^n; A \otimes x = \lambda \otimes x\}, \lambda \in \overline{\mathbb{R}} \\ V^*(A,\lambda) = \{x \in \overline{\mathbb{R}}^n; A \otimes x \leq \lambda \otimes x\}, \lambda \in \overline{\mathbb{R}} \\ V(A) \ ... \ \text{the set of all eigenvectors} \\ \Lambda(A) \ ... \ \text{the set of all eigenvalues} \\ \hline Tropical \ subspace \ \text{is } V \subseteq \overline{\mathbb{R}}^n \ \text{if for } x, y \in V \ \text{and} \ \alpha \in \overline{\mathbb{R}} : \\ x \oplus y \in V \ \text{and} \\ \alpha \otimes x \in V \\ V(A,\lambda) \ \text{and} \ V^*(A,\lambda) \ \text{are (tropical) subspaces} \\ \hline \end{array}$

If $v_1, ..., v_k \in \overline{\mathbb{R}}^n$, $\alpha_1, ..., \alpha_k \in \overline{\mathbb{R}}$ then $\sum_{j=1,...,k}^{\oplus} \alpha_j \otimes v_j$ is a *max-combination* of $v_1, ..., v_k$ For $M \in \overline{\mathbb{R}}^{m \times n}$ we denote span $(M) \stackrel{def}{=} \left\{ M \otimes z; z \in \overline{\mathbb{R}}^n \right\}$ span (M) is a (finitely generated) subspace Columns of M are called generators of span (M)A basis of a finitely generated subspace is any set of generators such that none of them is a max-combination of the others Dimension of a finitely generated subspace is the size of (any of) its basis Assume $A \in \mathbb{R}^{n \times n}$, $\lambda(A) > \varepsilon$ and recall $A_{\lambda} = (\lambda(A))^{-1} \otimes A$ n_c ... number of critical nodes, that is $|N_c|$ n_{cc} ... number of **non-trivial** components of C_A $n_0 = n - n_c$ Denote $(A_{\lambda})^+$ by A_{λ}^+ , $(A_{\lambda})^*$ by A_{λ}^* $(A_{\lambda}^+)_c$ = submatrix formed by the columns with critical indices Note: A_{λ}^* is just $I \oplus A_{\lambda}^+$ **Theorem:**

 $\begin{array}{l} V\left(A,\lambda\left(A\right)\right)=span\left(\left(A_{\lambda}^{+}\right)_{c}\right) \text{ and } dimV\left(A,\lambda\left(A\right)\right)=n_{cc}\\ V^{*}\left(A,\lambda\left(A\right)\right)=span\left(A_{\lambda}^{*}\right) \text{ and } dimV\left(A,\lambda\left(A\right)\right)=n_{cc}+n_{0}\\ \text{Essentially unique bases of } V\left(A,\lambda\left(A\right)\right) \text{ and } V^{*}\left(A,\lambda\left(A\right)\right) \text{ can be found in } O\left(n^{3}\right) \text{ time} \end{array}$

Finite subeigenvectors may be important for applications:

$$V^{**}(A,\lambda) = \{x \in \mathbb{R}^n; A \otimes x \leq \lambda \otimes x\}$$
, $\lambda \in \overline{\mathbb{R}}$

Theorem: Let $A = (a_{ij}) \in \overline{\mathbb{R}}^{n \times n}$, $A \neq \varepsilon$, $\lambda \in \overline{\mathbb{R}}$. Then $V^{**}(A, \lambda) \neq \emptyset$ if and only if $\lambda \ge \lambda(A)$ and $\lambda > \varepsilon$. If $\lambda \ge \lambda(A)$ and $\lambda > \varepsilon$ then

$$V^{**}(A,\lambda) = \left\{ (\lambda^{-1} \otimes A)^* \otimes u; u \in \mathbb{R}^n \right\}.$$

An application: Bounded mixed-integer solution to a system of dual inequalities

BMISDI: Find, or prove that it does not exist, a vector $x = (x_1, ..., x_n)^T$ satisfying:

$$\left.\begin{array}{ll} x_i - x_j \geq b_{ij}, & (i, j \in N) \\ u_j \geq x_j \geq l_j, & (j \in N) \\ x_j \text{ integer}, & (j \in J) \end{array}\right\}$$

where $u = (u_1, ..., u_n)^T$, $I = (I_1, ..., I_n)^T \in \mathbb{R}^n$ and $J \subseteq N = \{1, ..., n\}$ are given.

An application: Bounded mixed-integer solution to a system of dual inequalities

The system of dual inequalities (SDI)

$$x_i - x_j \ge b_{ij} \quad (i, j \in N)$$

is equivalent to:

$$\max_{j\in N} (b_{ij} + x_j) \le x_i \quad (i \in N)$$

in tropical notation:

$$\sum_{j\in N}^{\oplus} b_{ij} \otimes x_j \leq x_i \ (i \in N)$$

or in the compact form:

$$B \otimes x \leq x$$

∴ we are looking for finite subeigenvectors of *B* corresponding to $\lambda = 0$ ∴ $\lambda(B) \le 0$ is a necessary condition for the solvability of SDI ∴ the set of all finite solutions to $B \otimes x \le x$ is

$$V^{**}(B,0) = \{B^* \otimes z; z \in \mathbb{R}^n\}$$

An application: Bounded mixed-integer solution to a system of dual inequalities

$$(B \otimes x \leq x \text{ and } x \leq u) \iff$$
$$\iff x = B^* \otimes z \leq u, z \in \mathbb{R}^n$$
$$\iff x = B^* \otimes z, \ z \leq (B^*)^\# \otimes' u$$
$$\implies x \leq B^* \otimes \left((B^*)^\# \otimes' u \right)$$
$$\therefore l \leq B^* \otimes \left((B^*)^\# \otimes' u \right) \text{ is necessary and sufficient for the existence of a solution to SDI satisfying $l \leq x \leq u$$$

Algorithm BMISDI

Input: $B \in \mathbb{R}^{n \times n}$, $u, l \in \mathbb{R}^n$ and $J \subseteq N$.

Output: *x* satisfying BMISDI conditions or an indication that no such vector exists.

$$\begin{array}{l} x := u \\ x_j := \lfloor x_j \rfloor \text{ for } j \in J \\ z := (B^*)^{\#} \otimes' x, \, x := B^* \otimes z \\ \text{If } I \nleq x \text{ then stop (no solution)} \\ \text{If } I \leq x \text{ and } x_j \in \mathbb{Z} \text{ for } j \in J \text{ then stop else go to } 2. \\ \text{BMISDI requires } O(n^3 + n^2 L) \text{ operations of } +, \text{ max, min, } \leq \text{ and} \\ \lfloor \cdot \rfloor, \text{ where } \end{array}$$

$$L = \sum_{j \in J} \left(u_j - l_j \right)$$

 $A \approx B$ means: A can be obtained from B by a simultaneous permutation of rows and columns If $A \approx B$ then $\Lambda(A) = \Lambda(B)$ and there is a bijection between $V(A, \lambda)$ and $V(B, \lambda)$ for any λ

Frobenius Normal Form (FNF): $A \approx \begin{pmatrix} A_{11} & & \\ A_{21} & A_{22} & \varepsilon & \\ \vdots & \ddots & \\ \vdots & & \ddots & \\ A_{r1} & A_{r2} & \cdots & \cdots & A_{rr} \end{pmatrix}$ A_{11}, \ldots, A_{rr} irreducible The corresponding partition of $N : N_1, ..., N_r ...$ classes (of A) Reduced digraph Red(A) (partially ordered set): nodes: 1, ..., r arcs: (i, j) : $(\exists k \in N_i)(\exists \ell \in N_i)a_{k\ell} > \varepsilon$ $N_i \longrightarrow N_i$ or $i \longrightarrow j$ means: there is a directed path from i to j in $\operatorname{Red}(A)$

Finding all eigenvalues: Reduced digraph

Final classes: no outgoing arcs Peter Butkovic

Manchester 19/20 January 2012

A in an FNF:

$$\begin{pmatrix} A_{11} & & & \\ A_{21} & A_{22} & \varepsilon & \\ \vdots & & \ddots & \\ \vdots & & & \ddots & \\ A_{r1} & A_{r2} & \cdots & \cdots & A_{rr} \end{pmatrix}, A_{11}, \dots, A_{rr} \text{ irreducible}$$

Spectral Theorem (Gaubert, Bapat, 1992):

$$\Lambda(A) = \{\lambda(A_{ii}); \lambda(A_{ii}) \ge \lambda(A_{jj}) \text{ if } j \longrightarrow i\}$$

Corollary: Every matrix has at most *n* eigenvalues. *i* is called *spectral* if $\lambda(A_{ii}) \ge \lambda(A_{jj})$ whenever $j \longrightarrow i$ All real numbers $\lambda \ge \min \Lambda(A)$ are "subeigenvalues", that is $A \otimes x \le \lambda \otimes x$ for some $x \ne \varepsilon$. Part II. Reachability of eigenspaces by matrix orbits

э

Processors $P_1, ..., P_n$ work interactively and in stages $x_i(r) \ldots$ starting time of the r^{th} stage on processor P_i (i = 1, ..., n; r = 0, 1, ...) $a_{ij} \ldots$ time P_j needs to prepare the component for P_i $x_i(r+1) = max(x_1(r) + a_{i1}, ..., x_n(r) + a_{in})$ (i = 1, ..., n; r = 0, 1, ...) $x_i(r+1) = \sum_{k=0}^{\oplus} a_{ik} \otimes x_k(r)$ (i = 1, ..., n; r = 0, 1, ...) $x(r+1) = A \otimes x(r)$ (r = 0, 1, ...) $A: x(0) \rightarrow x(1) \rightarrow x(2) \rightarrow ...$

MPIS: STEADY REGIME

Given x(0), will the MPIS reach a *steady regime* (that is, will it move forward in regular steps)? Equivalently, is there a λ and an r_0 such that

$$x(r+1) = \lambda \otimes x(r) \ (r \ge r_0)?$$

$$x(r+1) = A \otimes x(r) \quad (r = 0, 1, \ldots)$$

Steady regime is reached if and only if for some λ and $r,\,x(r)$ is a solution to

$$A \otimes x = \lambda \otimes x$$

Since

$$x(r) = A \otimes x(r-1) = A^2 \otimes x(r-2) = \dots = A^r \otimes x(0),$$

a steady regime is reached if and only if $A^r \otimes x(0)$ "hits" an eigenvector of A for some r.

Reachability of an eigenspace: Given $A \in \overline{\mathbb{R}}^{n \times n}$ and an $x \in \overline{\mathbb{R}}^{n}$, $x \neq \varepsilon$, is there a k such that $A^{k} \otimes x$ is an eigenvector of A?

Various applications - a recent one: Brackley, Broomhead, Romano, Thiel: Max-Plus Model of Ribosome Dynamics During mRNA Translation, 2011 *Matrix orbit* with starting vector x: $A \otimes x, A^2 \otimes x, ..., A^k \otimes x, ...$ *Attraction set*:

$$Attr(A) = \left\{x; (\exists k) A^k \otimes x \in V(A)\right\}$$
$$V(A) \subseteq attr(A)$$

э

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ...

æ

Cyclicity (index of imprimitivity) of a strongly connected digraph = g.c.d. of the lengths of its cycles *Cyclicity* of a digraph = l.c.m. of cyclicities of its SCC Let $A \in \mathbb{R}^{n \times n}$ C_A ... critical digraph of A *Cyclicity of a matrix* $A: \sigma(A) =$ cyclicity of C_A A is primitive if $\sigma(A) = 1$

Cyclicity Theorem (Cohen et al 1985)

For every irreducible matrix $A \in \overline{\mathbb{R}}^{n \times n}$ the cyclicity of A is the period of A, that is, the smallest natural number p for which there is an integer T(A) such that

$$A^{r+p} = \left(\lambda\left(A\right)\right)^{p} \otimes A^{r}$$

for every $r \ge T(A)$ T(A) ... transient of A For A irreducible:

$$A^{r+\sigma}=\left(\lambda\left(A
ight)
ight)^{\sigma}\otimes A^{r}$$
, $r\geq T(A)$

For any A (irreducible or not): $\lambda (A^k) = (\lambda (A))^k$ for every integer $k \ge 0$ \therefore For A irreducible:

$$A^{\sigma}\otimes (A^{r}\otimes x)=\lambda \left(A^{\sigma}
ight) \otimes \left(A^{r}\otimes x
ight) ,\ \ r\geq T(A)$$

Corollary

If A is irreducible then $(\forall x \neq \varepsilon) A^r \otimes x \in V(A^s)$ for some r and $s \leq \sigma(A)$ Reachability asks about s = 1

Theorem (Nachtigall, 1997): Let $A \in \mathbb{R}^{n \times n}$ be irreducible. Critical rows and columns of A^r are periodic for $r \ge n^2$, that is for all $(i, j) \in (N_c(A) \times N) \cup (N \times N_c(A))$ we have:

$$oldsymbol{a}_{ij}^{\left(r+\sigma
ight)}=\left(\lambda\left(\mathcal{A}
ight)
ight)^{\sigma}\otimesoldsymbol{a}_{ij}^{\left(r
ight)}$$

Theorem (Sergeev, 2009): Let $A \in \mathbb{R}^{n \times n}$ be irreducible and definite. Then for every $r \geq T(A)$ and k = 1, ..., n coefficients $\alpha_i \in \mathbb{R}$ $(i \in N_c(A))$ such that

$$A_{k\cdot}^r = \sum_{i\in N_c(A)}^{\oplus} \alpha_i \otimes A_{i\cdot}^r$$

can be found in $O(n^3)$ time.

Corollary: If A is irreducible and definite then A^r for any $r \ge T(A)$ can be found in $O(n^3 \log n)$ time (but not r)

: Reachability of $V(A^s)$ for any s for A irreducible and definite, and any x can be checked in $O(n^3 \log n)$ time

REACHABILITY: Given $A \in \overline{\mathbb{R}}^{n \times n}$, its eigenvalue λ and $x \in \overline{\mathbb{R}}^n$, is there a k such that $z = A^k \otimes x$ is an eigenvector with eigenvalue λ ? That is $A \otimes z = \lambda \otimes z$. Now A reducible - in a Frobenius Normal Form: $\begin{pmatrix} A_{11} \\ A_{21} \\ A_{22} \\ \vdots \\ A_{r1} \\ A_{r2} \\ A_{r1} \\ A_{r2} \\ A_{r1} \\ A_{r2} \\ A_{rr} \\ A_{r$ A_{ii} irreducible may be 1×1 matrix (ε) ... "trivial" - **exclude at** first

For any $x \in \overline{\mathbb{R}}^n$ denote

$$J(x) = \{j \in R; x [N_j] \neq \varepsilon\},\$$

$$C(x) = \{i \in R; (\exists j \in J(x)) N_i \longrightarrow N_j\}.$$

 $N_i, i \in J(x)$ is final in C(x) if $N_i \longrightarrow N_j$ is not true for any $j \in J(x), j \neq i$. If $y = A \otimes x$ then

$$y[N_i] = \sum_{j \in R}^{\oplus} A_{ij} \otimes x[N_j]$$
 for every $i \in R$.

Suppose N_i is final in C(x) then

$$y[N_i] = A_{ii} \otimes x[N_i]$$

If N_i is final in C(x) then

$$y\left[N_{i}\right] = A_{ii} \otimes x\left[N_{i}\right]$$

[If $B \neq \varepsilon$ is irreducible and $v \neq \varepsilon$ then $B \otimes v \neq \varepsilon$] $\therefore y [N_i] \neq \varepsilon$ (since $A_{ii} \neq \varepsilon$) **Proposition**: Final classes in C(x) and C(y) coincide **Corollary**: If $A \otimes z = \lambda \otimes z$ and $z = A^k \otimes x$ for some k then the final classes in C(x) and C(z) coincide and

$$z\left[N_{i}\right]=A_{ii}^{k}\otimes x\left[N_{i}\right]$$

for any final class N_i in C(x)

 $A \otimes z = \lambda \otimes z$ blockwise:

$$\sum_{i\in R}^{\oplus} \mathsf{A}_{ij}\otimes z\left[\mathsf{N}_{j}
ight]=\lambda\otimes z\left[\mathsf{N}_{i}
ight]$$
 for every $i\in R$

If N_i is final in C(z):

$$A_{ii}\otimes z[N_i]=\lambda\otimes z[N_i]$$

:. If N_i final in C(x) then $x[N_i] \in attr(A_{ii})$ This is can be checked in $O(n^3 \log n)$ time We may assume that a periodic regime for all final classes has been reached If $A \otimes z = \lambda \otimes z$, and $z [N_i] \neq \varepsilon$ then $z [N_i]$ is finite, $\lambda (A_{ii}) \leq \lambda$ and $N_i \longrightarrow N_j$, where $\lambda (A_{jj}) = \lambda$ in particular, $\lambda (A_{ii}) = \lambda$ if N_i is final in C(z)We have already seen that $x [N_i] \neq \varepsilon \Longrightarrow z [N_i] \neq \varepsilon$ if $z = A^k \otimes x$ so a necessary reachability condition is:

$$x[N_i] \neq \varepsilon \Longrightarrow \lambda(A_{ii}) \leq \lambda$$

From now on assume that a periodic regime for all final classes has been reached (z = x)We may also assume that $\lambda = 0$ \therefore for any final class $x [N_i]$:

$$A_{ii}\otimes x\left[N_{i}\right]=x\left[N_{i}\right]$$

Reachability for reducible matrices

Checking the non-final classes - explanation for r = 2:

$$egin{array}{ccc} egin{array}{ccc} A = \left(egin{array}{ccc} A_{11} & arepsilon \ A_{21} & A_{22} \end{array}
ight)$$
 , $x = \left(egin{array}{ccc} x_1 \ x_2 \end{array}
ight)$

 $\begin{array}{l} A_{11}\otimes x_1=x_1\\ \text{Without loss of generality: } A_{21}\neq \varepsilon \text{ and } x_1\neq \varepsilon\\ \therefore \lambda \left(A_{22}\right)\leq 0\\ \text{Denote } x^0=x \text{ and} \end{array}$

$$x^{k} = A^{k} \otimes x^{0} = \left(\begin{array}{c} x_{1}^{k} \\ x_{2}^{k} \end{array}\right)$$

Since $x_1^k = x_1^0$ for every k we only need to check whether x_2^k is stationary (\otimes omitted):

$$x_2^k = A_{21}x_1^0 \oplus A_{22}x_2^{k-1} = \dots$$

Reachability for reducible matrices

Since $x_1^k = x_1^0$ for every k we only need to check whether x_2^k is stationary:

$$\begin{aligned} x_2^k &= A_{21} x_1^0 \oplus A_{22} x_2^{k-1} \\ &= A_{21} x_1^0 \oplus A_{22} \left(A_{21} x_1^0 \oplus A_{22} x_2^{k-2} \right) \\ & \dots \\ &= \left(I \oplus \dots \oplus A_{22}^{k-1} \right) A_{21} x_1^0 \oplus A_{22}^k x_2^0 \\ &= A_{22}^* A_{21} x_1^0 \oplus A_{22}^k x_2^0 \end{aligned}$$

 $v = A_{22}^* A_{21} x_1^0 \dots$ constant *finite* vector for $k \ge n-1$ If $\lambda (A_{22}) < 0$ then $A_{22}^k x_2^0 \longrightarrow -\infty$ and so $x_2^k = A_{22}^* A_{21} x_1^0$ for k large If $\lambda (A_{22}) = 0$: A_{22} is irreducible and definite periodic regime of A_{22} can be found in polynomial time For $k \geq T(A_{11})$ (unknown):

$$\mathcal{A}^k\otimes x=\left(egin{array}{cc} \mathcal{A}_{11}^k&arepsilon\ \mathcal{A}_{22}^k\mathcal{A}_{21}&\mathcal{A}_{22}^k\end{array}
ight)\otimes x$$

$$A_{11}^{k+1} \otimes x_1 = A_{11}^k \otimes x_1$$

 $\begin{array}{l} A_{11}^{k} \text{ can be found in polynomial time (for any } k \geq T(A_{11})) \\ A_{22}^{k+\sigma} \otimes x_{2} = A_{22}^{k} \otimes x_{2} \text{ where } \sigma = \sigma(A_{22}), k \geq T(A_{22}) \\ A_{22}^{k} \text{ can be found in polynomial time (for any } k \geq T(A_{22})) \\ \therefore A^{k+s} \otimes x = A^{k} \otimes x \text{ for some } s \leq \sigma \text{ and} \\ k \geq \max(T(A_{11}), T(A_{22}), n) \\ A^{k} \text{ can be found in polynomial time (for any } k \text{ large}) \end{array}$

Lemma: If there exist natural numbers s and T such that

 $A^{t+s} \otimes x = A^t \otimes x$ for every $t \ge T$ then

$$A^{r+1}\otimes x=A^r\otimes x$$

for a natural number $r \geq T$ if and only if

$$A^{k+1} \otimes x = A^k \otimes x$$

for every natural number $k \ge T$. Checking reachability thus reduces to checking

$$A^{k+1}\otimes x = A^k\otimes x$$

for $k \ge \max(T(A_{11}), T(A_{22}), n)$.

The role of trivial blocks

Peter Butkovic Manchester 19/20 January 2012

э

Proposition: Let $z^{(k)} = A^k \otimes x$, k = 1, 2, If N_i is trivial (that

is $A_{ii} = (\varepsilon)$) then either $z^{(k)} [N_i] = \varepsilon$ for all $k \ge 2n$ or $z^{(k)} [N_i] \ne \varepsilon$ for all $k \ge 2n$ **Proposition**: For every $k \ge 2n$ every *i* the class $z^{(k+1)} [N_i]$ is final if and only if $z^{(k)} [N_i]$ is final. **Corollary**: For solving REACHABILITY it is sufficient to first move $x \longrightarrow A^{2n} \otimes x$

$$\begin{array}{l} V(A) \subseteq \textit{attr}(A) \subseteq \overline{\mathbb{R}}^n - \{\varepsilon\} \\ \text{Two extremes:} \\ \textit{attr}(A) = \overline{\mathbb{R}}^n - \{\varepsilon\} \quad \dots \; A \; \textit{strongly stable} \; (\textit{robust}) \\ \textit{attr}(A) = V(A) \quad \dots \; A \; \textit{weakly stable} \end{array}$$

< ≣ ► <

문 문 문

If A is irreducible and primitive then by the Cyclicity Theorem: $A^{k+1} = \lambda(A) \otimes A^k$ for k large $A^{k+1} \otimes x = \lambda(A) \otimes A^k \otimes x$ for k large and any $x \in \overline{\mathbb{R}}^n$ A irreducible: A is robust $\iff A$ is primitive **Robustness criterion for reducible matrices** (PB & S.Gaubert & RACG 2009): A with FNF classes $N_1, ...N_r$ and no ε column is robust if and only if

All nontrivial classes are primitive and spectral $(\forall i, j)$ If N_i, N_j are non-trivial, $N_i \nleftrightarrow N_j$ and $N_j \nleftrightarrow N_i$ then

$$\lambda(A_{ii}) = \lambda(A_{jj})$$

Reduced digraph of a robust matrix with $\lambda_1 < \lambda_2 < \lambda_3 < \lambda_4$:

A B M A B M

A weakly stable: attr (A) = V(A)Let A be irreducible $V(A) = \{x \in \overline{\mathbb{R}}^n; A \otimes x = \lambda(A) \otimes x, x \neq \varepsilon\}$... eigenvectors $V_*(A) = \{x \in \overline{\mathbb{R}}^n; A \otimes x \leq \lambda(A) \otimes x, x \neq \varepsilon\}$... subeigenvectors $V^*(A) = \{x \in \overline{\mathbb{R}}^n; A \otimes x \geq \lambda(A) \otimes x, x \neq \varepsilon\}$... supereigenvectors

Weakly stable matrices

$$V(A) \subseteq V_*(A) \subseteq Attr(A)$$
$$V(A) \subseteq V^*(A) \subseteq Attr(A)$$

 $A \text{ weakly stable} \Longrightarrow V(A) = V^*(A) = V_*(A) = Attr(A) = Attr(A) = Attr(A)$

Peter Butkovic Manchester 19/20 January 2012

Let A be irreducible. A is weakly stable $\iff C_A$ is a Hamilton cycle in D_A .

A is weakly stable if and only if every spectral class of A is initial and weakly stable

Peter Butkovic Manchester 19/20 January 2012

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ● ● ● ●

$$\begin{split} &A = (a_{ij}) \in \overline{\mathbb{R}}^{n \times n} \text{ is called } \textit{visualised if} \\ &a_{ij} \leq 0 \text{ for all } i, j \\ &a_{ij} = 0 \text{ if } (i, j) \in E_c \\ &\text{ If } \lambda(A) > \varepsilon \text{ and } x \text{ is a finite eigenvector then } B = X^{-1} \otimes A_\lambda \otimes X \\ &\text{ is visualised, where } X = diag(x_1, ..., x_n) \\ &\text{ There is a bijection between } V(A) \text{ and } V(B) \text{ and} \\ &\lambda(B) = \lambda(A_\lambda) = 0 \end{split}$$

 \therefore There is no loss of generality to assume that A is visualised and definite.

P. Butkovic: Max-linear Systems: Theory and Algorithms (Springer Monographs in Mathematics, Springer-Verlag 2010)

For A irreducible and definite:

$$A^{r+\sigma} = A^r$$
 for all $r \ge T(A)$

Corollary 1: Let A be irreducible and definite and $r \ge T(A)$. Then $A^r \otimes x = A^{r+p} \otimes x$ is equivalent to its critical subsystem for $r \ge n^2$.

Example: If

$$A = \begin{pmatrix} -2 & 1 & -3 \\ 3 & 0 & 3 \\ 5 & 2 & 1 \end{pmatrix}$$

then

$$\begin{array}{rcl} \lambda(A) & = & \max\left\{-2, 0, 1, 2, 1, 5/2, 3, 2/3\right\} = 3 \\ \sigma & = & (1, 2, 3) \text{ is critical} \end{array}$$

イロン イロン イヨン イヨン

æ

Eigenproblem: The principal eigenvalue and eigenvectors

$$A = \begin{pmatrix} 7 & 9 & 5 & 5 & 3 & 7 \\ \hline 7 & 5 & 2 & 7 & 0 & 4 \\ 8 & 0 & 3 & 3 & 8 & 0 \\ 7 & 2 & 5 & 7 & 9 & 5 \\ 4 & 2 & 6 & 6 & 8 & 8 \\ 3 & 0 & 5 & 7 & 1 & 2 \end{pmatrix}, \quad \lambda(A) = 8$$

Peter Butkovic Manchester 19/20 January 2012

 э

Eigenproblem: The principal eigenvalue and eigenvectors

Critical cycles: (1, 2, 1), (5, 5), (4, 5, 6, 4)

Node sets of all strongly connected components:

$$\{1,2\}$$
 , $\{3\}$, $\{4,5,6\}$

Three strongly connected components, one of them trivial $N_c = \{1, 2, 4, 5, 6\}$

An example

$$\begin{pmatrix} -2 & 2 & 2 \\ -5 & -3 & -2 \\ \varepsilon & \varepsilon & 3 \\ -3 & -3 & 2 \\ 1 & 4 & \varepsilon \end{pmatrix} \otimes \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 3 \\ -2 \\ 1 \\ 0 \\ 5 \end{pmatrix}$$
$$\begin{pmatrix} -5 & -1 & -1 \\ \hline -3 & -1 & 0 \\ \varepsilon & \varepsilon & 2 \\ \hline -3 & -3 & 2 \\ -4 & -1 & \varepsilon \end{pmatrix} \otimes \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$
$$M_1 = \{2, 4\}, M_2 = \{1, 2, 5\}, M_3 = \{3, 4\}$$
$$\overline{x} = (3, 1, -2)^T \text{ is a solution since } \bigcup_{j=1,2,3} M_j = M$$
$$M_2 \cup M_3 = M \text{ hence the solution set is}$$
$$\left\{ (x_1, x_2, x_3)^T \in \overline{\mathbb{R}}^3; x_1 \le 3, x_2 = 1, x_3 = -2 \right\}$$

・ロト ・回ト ・ヨト ・ヨト

æ

Peter Butkovic Manchester 19/20 January 2012

æ

《曰》《聞》《臣》《臣》

9 5 5 3 7 1 -3 -3 -5 -1 -1 5 -3 -8 -6 -5 2 7 0 -8 7 4 -1 -1 -4 8 3 0 3 8 0 -5 0 0 -8 -8 -6 -6 -3 -2 7 2 5 7 9 5 -1 -1 1 -3 4 2 6 8 -2 6 8 0 0 -4 3 2 -5 -8 0 5 7 -1 -7 -6 1 -5 À A_{λ}

《曰》《聞》《臣》《臣》

9 5 5 3 1 -3 -3 -5 -1 7 -1 5 -3 2 7 -6 -8 0 4 -1 -1 7 -4 8 0 3 3 8 0 -8 -5 -5 -8 0 0 -8 7 2 -6 -3 5 7 9 5 -1 -1 1 -3 8 8 -6 -2 4 2 6 -2 0 0 6 -4 3 2 -8 -7 0 5 7 1 -5 -5 -1 -6 Α A_{λ}

イロン 不聞 とくほとう ほどう

9 5 5 3 -1 1 -3 -3 -5 -1 5 7 -3 -6 2 0 4 -1 -1 -8 7 -4 8 0 3 3 8 0 0 -8 -5 -5 -8 0 -8 7 -6 -3 -2 2 5 7 9 5 -3 -1 1 -6 4 2 6 8 8 -2 0 6 0 -4 3 2 -5 -8 -7 0 5 7 1 -5 -1 -6 Α A_{λ} 0 1 -1 0 0 0 -1 0 2 -1 0 -1 -1 0 0 -1 1 -1 1 0 0 1 0 1 -1 0 0 -1 0 1 -2 -2 -2 -1 -2 -1 0 0 • -2 -1 -2 -1 0 0 -1 A_{λ}^+

(日)

Eigenproblem: The principal eigenvalue and eigenvectors

$$A = \begin{pmatrix} 0 & 3 \\ 1 & -1 \\ & 2 \\ & & 1 \end{pmatrix}, \text{ blank} = \varepsilon$$
$$\lambda(A) = 2$$
$$N_c = \{1, 2, 3\}$$
$$1 \sim 2$$
$$\dim(A) = 2$$
$$A_{\lambda}^{+} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \\ & & 0 \\ & & -1 \end{pmatrix}$$
$$A \text{ basis of the principal eigenspace is e.g.} \left\{ g_2 = (1, 0, \varepsilon, \varepsilon)^T, g_3 = (\varepsilon, \varepsilon, 0, \varepsilon)^T \right\}$$

< ∃ →

Finding all eigenvalues

$$A = \begin{pmatrix} 0 & 3 \\ 5 & 1 \\ & 4 \\ & 0 & 3 & 1 \\ & -1 & 2 \\ & & 1 & 5 \end{pmatrix}$$
 (blank = ε)
$$\lambda(A_{11}) = 4, \lambda(A_{22}) = 4, \lambda(A_{33}) = 3, \lambda(A_{44}) = 5, r = 4$$

$$\lambda(A) = 5$$

 $\Lambda(A) = \{4, 5\}$ $N_1, N_4 \text{ are spectral } (N_2 \text{ is not})$

$$\lambda (A) > \varepsilon$$

$$A_{\lambda} = (\lambda (A))^{-1} \otimes A$$

$$A^{+} = A \oplus A^{2} \oplus ... \oplus A^{n-1} \oplus A^{n}$$

$$A \longrightarrow A_{\lambda}$$

Э

$$\lambda (A) > \varepsilon$$

$$A_{\lambda} = (\lambda (A))^{-1} \otimes A$$

$$A^{+} = A \oplus A^{2} \oplus ... \oplus A^{n-1} \oplus A^{n}$$

$$A \longrightarrow A_{\lambda} \longrightarrow (A_{\lambda})^{+}$$

'≣ ▶

< Ξ

$$\begin{split} \lambda & (A) > \varepsilon \\ A_{\lambda} &= (\lambda & (A))^{-1} \otimes A \\ A^{+} &= A \oplus A^{2} \oplus \dots \oplus A^{n-1} \oplus A^{n} \\ A &\longrightarrow A_{\lambda} &\longrightarrow (A_{\lambda})^{+} \text{ (briefly } A_{\lambda}^{+}) \end{split}$$

Э

If $\lambda(A) > \varepsilon$ then every column of A_{λ}^+ with zero diagonal entry is an eigenvector of A with corresponding eigenvalue $\lambda(A)$ (*principal eigenvector*)

An essentially unique basis of $V(A, \lambda(A))$ (the *principal eigenspace*) can be obtained by taking exactly one principal eigenvector of A for each equivalence class in (N_c, \sim) If $A_{\lambda}^+ = (g_1, ..., g_n)$ then $i \sim j$ if and only if $g_i = \alpha \otimes g_j, \alpha \in \mathbb{R}$ If A is irreducible then $V(A) = V(A, \lambda(A))$ and $V(A) \subseteq \mathbb{R}^n$