Tropical Linear Algebra (Achievements and Challenges)

Peter Butkovic

I. Basics
II. Reachability of tropical eigenspaces by matrix orbits
III. Tropical permanent

Credits

R.A.Cuninghame-Green
N.N.Vorobyev
M.Gondran
M.Minoux
G.Cohen
J.-P.Quadrat
V.Maslov
V.Kolokoltsov
E.Wagneur
S.Gaubert
M.Akian

Part I - Tropical linear algebra basics

Max-plus and variants

$$
\begin{aligned}
& \overline{\mathbb{R}}=\mathbb{R} \cup\{-\infty\} \\
& a \oplus b=\max (a, b) \\
& a \otimes b=a+b \\
& (\overline{\mathbb{R}}, \oplus, \otimes) \ldots \text { idempoter } \\
& \text { Notation: } \\
& \varepsilon \text { for }-\infty \\
& a^{-1} \text { stands for }-a \\
& \underbrace{a \otimes a \otimes a \otimes \ldots \otimes a}_{k \text {-times }}=a^{k}
\end{aligned}
$$

$$
(\overline{\mathbb{R}}, \oplus, \otimes) \quad \ldots \text { idempotent, commutative semiring }
$$

From classical to tropical...

V.Maslov+V.Kolokoltsov (1980s): "dequantisation":

$$
\left(a^{k}+b^{k}\right)^{1 / k} \longrightarrow \max (a, b) \text { for } k \longrightarrow \infty
$$

Max-plus and variants

$\mathcal{G}=(G, \otimes, \leq) \ldots$ linearly ordered commutative group
$a \oplus b=\max (a, b)$
$\varepsilon \leq a$ for all $a \in G$ (adjoined)
$(G \cup\{\varepsilon\}, \oplus, \otimes)$... commutative idempotent semiring
$\mathcal{G}_{0}=(\mathbb{R},+, \leq) \ldots$ max-plus
$\mathcal{G}_{1}=(\mathbb{R},+, \geq) \ldots$ min-plus $(x \longrightarrow-x)$
$\mathcal{G}_{2}=\left(\mathbb{R}^{+}, \cdot, \leq\right) \ldots$ max-times $\left(x \longrightarrow e^{x}\right)$
$\mathcal{G}_{3}=(\mathbb{Z},+, \leq)$
In what follows: \mathcal{G}_{0}

Extension to matrices and vectors

$$
\begin{aligned}
& A \oplus B=\left(a_{i j} \oplus b_{i j}\right) \\
& A \otimes B=\left(\sum_{k}^{\oplus} a_{i j} \otimes b_{k j}\right) \\
& \alpha \otimes A=\left(\alpha \otimes a_{i j}\right) \\
& \\
& \operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)=\left(\begin{array}{lllll}
d_{1} & & & & \\
\\
& \ddots & & \varepsilon & \\
& & \ddots & & \\
& \varepsilon & & \ddots & \\
& & & & d_{n}
\end{array}\right) \\
& I=\operatorname{diag}(0, \ldots, 0) \\
& \underbrace{A \otimes A \otimes A \otimes \ldots \otimes A}_{k-\text { times }}=A^{k}
\end{aligned}
$$

Some basic properties

Compared to ($\mathbb{R},+,$.$) we are$ losing invertibility
gaining idempotency
A^{-1} exists $\Longleftrightarrow A$ is a generalised permutation matrix Idempotency: $a \oplus a=a$
$(a \oplus b)^{k}=a^{k} \oplus b^{k}$, if $k \geq 0$
$(A \oplus B)^{k} \neq A^{k} \oplus B^{k}$
$(I \oplus A)^{k}=I \oplus A \oplus A^{2} \oplus \ldots \oplus A^{k}$
Another useful property: $A \leq B \Rightarrow A \otimes C \leq B \otimes C$

Tropical linear algebra: non-linear becomes "linear"

$$
\begin{aligned}
x_{3} & =\max \left(x_{1}+a_{1}, x_{2}+a_{2}\right) \\
& =a_{1} \otimes x_{1} \oplus a_{2} \otimes x_{2}=\left(a_{1}, a_{2}\right) \otimes\binom{x_{1}}{x_{2}}
\end{aligned}
$$

Basic problems

One-sided max-linear systems:
$A \otimes x=b$
$A \otimes x \leq b$
$A \otimes x=\lambda \otimes x \quad(x \ldots$ eigenvector if $x \neq \varepsilon)$
$A \otimes x \leq \lambda \otimes x \quad(x \ldots$ subeigenvector if $x \neq \varepsilon)$

Basic problems

Two-sided max-linear systems:
$A \otimes x=B \otimes x$
$A \otimes x=B \otimes y$
$A \otimes x \oplus c=B \otimes x \oplus d$
$A \otimes x=\lambda \otimes B \otimes x$ (generalized eigenproblem)

Basic problems

Max-linear programming:
$f^{T} \otimes x \longrightarrow \min (\max)$
s.t.
$A \otimes x=b$
$f^{T} \otimes x \longrightarrow \min (\max)$
s.t.
$A \otimes x \oplus c=B \otimes x \oplus d$

Basic problems

Periodicity of matrix powers:
A, A^{2}, A^{3}, \ldots
Periodicity of matrix orbits:
$A \otimes x, A^{2} \otimes x, A^{3} \otimes x, \ldots$
Tropical polynomials, characteristic polynomial and
Cayley-Hamilton
Linear independence, regularity, rank,...

Tools for working with tropical matrices

The conjugate and dual operators

Maximum cycle mean

Transitive closures

Permanent (tropical)

Dual operators and conjugation

Dual operators:

$$
\begin{aligned}
a \oplus^{\prime} b & =\min (a, b) \\
a \otimes^{\prime} b & =a+b \\
-\infty \otimes^{\prime}+\infty & =+\infty=+\infty \otimes^{\prime}-\infty
\end{aligned}
$$

The conjugate:

$$
A^{\#}=-A^{T}
$$

Theorem (Cuninghame-Green, 1979)

$$
A \otimes x \leq b \Longleftrightarrow x \leq A^{\#} \otimes^{\prime} b
$$

Residuation, Galois connection, ...

Dual operators and conjugation

$$
A \otimes x \leq b \Longleftrightarrow x \leq A^{\#} \otimes^{\prime} b
$$

Corollary 1: For any $A \in \overline{\mathbb{R}}^{m \times n}$ and $b \in \overline{\mathbb{R}}^{m}$ the system $A \otimes x \leq b$ has a solution and $\bar{x} \stackrel{d f}{=} A^{\#} \otimes^{\prime} b$ is the greatest solution. Corollary 2: For any $A, B \in \overline{\mathbb{R}}^{m \times n}$

$$
A \otimes\left(A^{\#} \otimes^{\prime} B\right) \leq B
$$

and [thus also]

$$
A \otimes\left(A^{\#} \otimes^{\prime} A\right) \leq A
$$

Dual operators and conjugation

Remark: For every A actually

$$
A \otimes\left(A^{\#} \otimes^{\prime} A\right)=A
$$

and more generally:

$$
\begin{gathered}
A^{\#} A A^{\#} A \ldots A^{\#} A A^{\#} \\
A A^{\#} A A^{\#} \ldots A A^{\#} A \\
\otimes^{\prime} \otimes \ldots \otimes^{\prime} \otimes^{\prime} \\
\otimes^{\prime} \otimes \otimes^{\prime} \ldots \otimes^{\prime} \otimes \\
\left(A^{\#} \otimes A\right) \otimes^{\prime} \ldots \otimes^{\prime}\left(\left(A^{\#} \otimes A\right) \otimes^{\prime} A\right) \otimes \ldots \otimes^{\prime} A^{\#}=A^{\#}
\end{gathered}
$$

Dual operators and conjugation

$\bar{x}=A^{\#} \otimes^{\prime} b$... the principal solution to $A \otimes x \leq b$
What about $A \otimes x=b$?
Suppose $A \otimes x=b$ for some x
$\therefore A \otimes x \leq b$
$\therefore x \leq \bar{x}$
$\therefore A \otimes x \leq A \otimes \bar{x}$
$\therefore b=A \otimes x \leq A \otimes \bar{x} \leq b$
$\therefore A \otimes \bar{x}=b$
Corollary 3: $A \otimes x=b$ has a solution if and only if $A \otimes \bar{x}=b$ that is

$$
A \otimes\left(A^{\#} \otimes^{\prime} b\right)=b
$$

Dual operators and conjugation

$$
\bar{x}=A^{\#} \otimes^{\prime} b
$$

For $j=1, \ldots, n$

$$
\begin{array}{r}
\bar{x}_{j}=\min _{i}\left(a_{j i}^{\#}+b_{i}\right) \\
=\min _{i}\left(-a_{i j}+b_{i}\right) \\
=-\max _{i}\left(a_{i j}-b_{i}\right) \\
M_{j}=\left\{k ; \bar{x}_{j}=-a_{k j}+b_{k}\right\}, j=1, \ldots, n
\end{array}
$$

Dual operators and conjugation

Combinatorial method (Cuninghame-Green, 1960): $A \otimes x=b$ if and only if $x \leq \bar{x}$ and

$$
\bigcup_{x_{j}=\bar{x}_{j}} M_{j}=\{1, \ldots, m\}
$$

Corollary: Finding a solution to $A \otimes x=b$ with the least number of components equal to $\bar{x}=A^{\#} \otimes^{\prime} b$ is an $N P$-complete problem.

Maximum cycle mean

Given $A=\left(a_{i j}\right) \in \overline{\mathbb{R}}^{n \times n}$, the mean of a cycle $\sigma=\left(i_{1}, \ldots, i_{k}, i_{1}\right)$:

$$
\mu(\sigma, A)=\frac{a_{i_{1} i_{2}}+a_{i_{2} i_{3}}+\ldots+a_{i_{k} i_{1}}}{k}
$$

Maximum cycle mean of $A \in \overline{\mathbb{R}}^{n \times n}$:

$$
\lambda(A)=\max \{\mu(\sigma, A) ; \sigma \text { cycle }\}
$$

$\mu(\sigma, A)=\lambda(A) \ldots \sigma$ is critical
Many algorithms for the computation of $\lambda(A)$ (Karp's is $O\left(n^{3}\right)$)

Maximum cycle mean is the principal eigenvalue

For any $A, \lambda(A)$ is
an eigenvalue of A
the greatest (principal) eigenvalue of A
the only eigenvalue of A whose corresponding eigenvectors may be finite
the unique eigenvalue if A is irreducible (in this case all eigenvectors are finite)
Every eigenvalue of A is the maximum cycle mean of some principal submatrix

Maximum cycle mean - definite matrices

A is (max-)definite if $\lambda(A)=0$
$\lambda(\alpha \otimes A)=\alpha \otimes \lambda(A)$
In particular: $\lambda\left((\lambda(A))^{-1} \otimes A\right)=(\lambda(A))^{-1} \otimes \lambda(A)=0$
$A \longrightarrow A_{\lambda}=(\lambda(A))^{-1} \otimes A$ (transition to a definite matrix)

"Passage Theorem" (Friedland 1986)

A ... an irreducible nonnegative matrix
$\rho(A) \ldots$ the Perron root of A
$\left\{A^{k}\right\}_{k=1}^{\infty} \ldots$ sequence of Hadamard (Schur) powers
Dequantisation: $\left(\rho\left(A^{k}\right)\right)^{1 / k} \longrightarrow \lambda(A)$ (in max-times) and

$$
\lambda(A) \leq \rho(A) \leq n \lambda(A)
$$

Associated graph

$A=\left(a_{i j}\right) \in \overline{\mathbb{R}}^{n \times n} \longrightarrow D_{A}=\left(N, E,\left(a_{i j}\right)\right)$
where $E=\left\{(i, j) ; a_{i j}>-\infty\right\}$
A is irreducible iff D_{A} strongly connected

Critical graph

$\mu(\sigma, A)=\lambda(A) \ldots \sigma$ is critical
$C_{A}=\left(N, E_{c}\right)$ where E_{c} is the set of arcs of all critical cycles $N_{c} \ldots$ the set of nodes of critical cycles
$i \sim j$ (equivalent nodes) $\ldots i$ and j belong to the same critical cycle

For $A \in \overline{\mathbb{R}}^{n \times n}$ define:
$A^{+}=A \oplus A^{2} \oplus A^{3} \oplus \ldots$ (metric matrix/weak transitive closure) $A^{*}=I \oplus A \oplus A^{2} \oplus A^{3} \oplus \ldots$ (Kleene star/strong transitive closure)
If A is definite:
$A^{+}=\quad A \oplus A^{2} \oplus \ldots \oplus A^{n-1} \oplus A^{n}$
$A^{*}=I \oplus A \oplus A^{2} \oplus \ldots \oplus A^{n-1}$

Eigenspaces and subeigenspaces

$V(A, \lambda)=\left\{x \in \overline{\mathbb{R}}^{n} ; A \otimes x=\lambda \otimes x\right\}, \lambda \in \overline{\mathbb{R}}$
$V^{*}(A, \lambda)=\left\{x \in \overline{\mathbb{R}}^{n} ; A \otimes x \leq \lambda \otimes x\right\}, \lambda \in \overline{\mathbb{R}}$
$V(A) \ldots$ the set of all eigenvectors
$\Lambda(A)$... the set of all eigenvalues
Tropical subspace is $V \subseteq \overline{\mathbb{R}}^{n}$ if for $x, y \in V$ and $\alpha \in \overline{\mathbb{R}}$:
$x \oplus y \in V$ and
$\alpha \otimes x \in V$
$V(A, \lambda)$ and $V^{*}(A, \lambda)$ are (tropical) subspaces
Bases? Dimension?

Finitely generated tropical subspaces - bases and dimension

If $v_{1}, \ldots, v_{k} \in \overline{\mathbb{R}}^{n}, \alpha_{1}, \ldots, \alpha_{k} \in \overline{\mathbb{R}}$ then $\sum_{j=1, \ldots, k}^{\oplus} \alpha_{j} \otimes v_{j}$ is a max-combination of v_{1}, \ldots, v_{k}
For $M \in \overline{\mathbb{R}}^{m \times n}$ we denote $\operatorname{span}(M) \stackrel{\text { def }}{=}\left\{M \otimes z ; z \in \overline{\mathbb{R}}^{n}\right\}$
span (M) is a (finitely generated) subspace
Columns of M are called generators of span (M)
A basis of a finitely generated subspace is any set of generators such that none of them is a max-combination of the others Dimension of a finitely generated subspace is the size of (any of) its basis

Eigenspaces and subeigenspaces - bases and dimension

Assume $A \in \overline{\mathbb{R}}^{n \times n}, \lambda(A)>\varepsilon$ and recall $A_{\lambda}=(\lambda(A))^{-1} \otimes A$
$n_{c} \ldots$ number of critical nodes, that is $\left|N_{c}\right|$
$n_{c c} \ldots$ number of non-trivial components of C_{A}
$n_{0}=n-n_{c}$
Denote $\left(A_{\lambda}\right)^{+}$by $A_{\lambda}^{+},\left(A_{\lambda}\right)^{*}$ by A_{λ}^{*}
$\left(A_{\lambda}^{+}\right)_{c}=$ submatrix formed by the columns with critical indices
Note: A_{λ}^{*} is just $I \oplus A_{\lambda}^{+}$
Theorem:
$V(A, \lambda(A))=\operatorname{span}\left(\left(A_{\lambda}^{+}\right)_{c}\right)$ and $\operatorname{dim} V(A, \lambda(A))=n_{c c}$
$V^{*}(A, \lambda(A))=\operatorname{span}\left(A_{\lambda}^{*}\right)$ and $\operatorname{dim} V(A, \lambda(A))=n_{c c}+n_{0}$
Essentially unique bases of $V(A, \lambda(A))$ and $V^{*}(A, \lambda(A))$ can be found in $O\left(n^{3}\right)$ time

Finite subeigenvectors

Finite subeigenvectors may be important for applications:

$$
V^{* *}(A, \lambda)=\left\{x \in \mathbb{R}^{n} ; A \otimes x \leq \lambda \otimes x\right\}, \lambda \in \overline{\mathbb{R}}
$$

Theorem: Let $A=\left(a_{i j}\right) \in \overline{\mathbb{R}}^{n \times n}, A \neq \varepsilon, \lambda \in \overline{\mathbb{R}}$. Then $V^{* *}(A, \lambda) \neq \varnothing$ if and only if $\lambda \geq \lambda(A)$ and $\lambda>\varepsilon$.
If $\lambda \geq \lambda(A)$ and $\lambda>\varepsilon$ then

$$
V^{* *}(A, \lambda)=\left\{\left(\lambda^{-1} \otimes A\right)^{*} \otimes u ; u \in \mathbb{R}^{n}\right\}
$$

An application: Bounded mixed-integer solution to a system of dual inequalities

BMISDI: Find, or prove that it does not exist, a vector $x=\left(x_{1}, \ldots, x_{n}\right)^{T}$ satisfying:

$$
\left.\begin{array}{cc}
x_{i}-x_{j} \geq b_{i j}, & (i, j \in N) \\
u_{j} \geq x_{j} \geq l_{j}, & (j \in N) \\
x_{j} \text { integer, } & (j \in J)
\end{array}\right\}
$$

where $u=\left(u_{1}, \ldots, u_{n}\right)^{T}, I=\left(I_{1}, \ldots, I_{n}\right)^{T} \in \mathbb{R}^{n}$ and $J \subseteq N=\{1, \ldots, n\}$ are given.

An application: Bounded mixed-integer solution to a system of dual inequalities

The system of dual inequalities (SDI)

$$
x_{i}-x_{j} \geq b_{i j} \quad(i, j \in N)
$$

is equivalent to:

$$
\max _{j \in N}\left(b_{i j}+x_{j}\right) \leq x_{i} \quad(i \in N)
$$

in tropical notation:

$$
\sum_{j \in N}^{\oplus} b_{i j} \otimes x_{j} \leq x_{i} \quad(i \in N)
$$

or in the compact form:

$$
B \otimes x \leq x
$$

An application: Bounded mixed-integer solution to a system of dual inequalities

\therefore we are looking for finite subeigenvectors of B corresponding to $\lambda=0$
$\therefore \lambda(B) \leq 0$ is a necessary condition for the solvability of SDI
\therefore the set of all finite solutions to $B \otimes x \leq x$ is

$$
V^{* *}(B, 0)=\left\{B^{*} \otimes z ; z \in \mathbb{R}^{n}\right\}
$$

An application: Bounded mixed-integer solution to a system of dual inequalities

$$
\begin{aligned}
& (B \otimes x \leq x \text { and } x \leq u) \Longleftrightarrow \\
& \Longleftrightarrow x=B^{*} \otimes z \leq u, z \in \mathbb{R}^{n} \\
& \Longleftrightarrow x=B^{*} \otimes z, z \leq\left(B^{*}\right)^{\#} \otimes^{\prime} u \\
& \Longrightarrow x \leq B^{*} \otimes\left(\left(B^{*}\right)^{\#} \otimes^{\prime} u\right)
\end{aligned}
$$

$\therefore I \leq B^{*} \otimes\left(\left(B^{*}\right)^{\#} \otimes^{\prime} u\right)$ is necessary and sufficient for the existence of a solution to SDI satisfying $I \leq x \leq u$

An application: Bounded mixed-integer solution to a system of dual inequalities

Algorithm BMISDI

Input: $B \in \mathbb{R}^{n \times n}, u, I \in \mathbb{R}^{n}$ and $J \subseteq N$.
Output: x satisfying BMISDI conditions or an indication that no such vector exists.
$x:=u$
$x_{j}:=\left\lfloor x_{j}\right\rfloor$ for $j \in J$
$z:=\left(B^{*}\right)^{\#} \otimes^{\prime} x, x:=B^{*} \otimes z$
If $I \not \equiv x$ then stop (no solution)
If $I \leq x$ and $x_{j} \in \mathbb{Z}$ for $j \in J$ then stop else go to 2 .
BMISDI requires $O\left(n^{3}+n^{2} L\right)$ operations of + , max, min, \leq and
$\lfloor\cdot\rfloor$, where

$$
L=\sum_{j \in J}\left(u_{j}-l_{j}\right)
$$

Finding all eigenvalues: the reduced graph

$A \approx B$ means: A can be obtained from B by a simultaneous permutation of rows and columns
If $A \approx B$ then
$\Lambda(A)=\Lambda(B)$ and there is a bijection between $V(A, \lambda)$ and $V(B, \lambda)$ for any λ

Finding all eigenvalues: the reduced graph

Frobenius Normal Form (FNF):
$A \approx\left(\begin{array}{ccccc}A_{11} & & & & \\ A_{21} & A_{22} & & \varepsilon & \\ \vdots & & \ddots & & \\ \vdots & & & \ddots & \\ A_{r 1} & A_{r 2} & \cdots & \cdots & A_{r r}\end{array}\right)$
$A_{11}, \ldots, A_{r r}$ irreducible
The corresponding partition of $N: N_{1}, \ldots, N_{r} \ldots$ classes (of A) Reduced digraph $\operatorname{Red}(A)$ (partially ordered set):
nodes: 1, ..., r
arcs: $(i, j):\left(\exists k \in N_{i}\right)\left(\exists \ell \in N_{j}\right) a_{k \ell}>\varepsilon$
$N_{i} \longrightarrow N_{j}$ or $i \longrightarrow j$ means: there is a directed path from i to j in $\operatorname{Red}(A)$

Finding all eigenvalues: Reduced digraph

$$
\left(\begin{array}{cccccc}
A_{11} & \mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} \\
* & A_{22} & \mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} \\
* & * & A_{33} & \mathcal{\varepsilon} & \mathcal{\varepsilon} & \mathcal{\varepsilon} \\
* & \mathcal{E} & \mathcal{E} & A_{44} & \mathcal{E} & \mathcal{\varepsilon} \\
\mathcal{E} & \mathcal{E} & \mathcal{E} & \mathcal{E} & A_{55} & \mathcal{E} \\
\varepsilon & \mathcal{E} & \mathcal{E} & \mathcal{E} & * & A_{66}
\end{array}\right)(* \neq \varepsilon)
$$

Initial classes: no incoming arcs
Final_asces. noutcoing arce

Finding all eigenvalues: Spectral Theorem

A in an FNF:
$\left(\begin{array}{ccccc}A_{11} & & & & \\ A_{21} & A_{22} & & \varepsilon & \\ \vdots & & \ddots & & \\ \vdots & & & \ddots & \\ A_{r 1} & A_{r 2} & \cdots & \cdots & A_{r r}\end{array}\right), A_{11}, \ldots, A_{r r}$ irreducible
Spectral Theorem (Gaubert, Bapat, 1992):

$$
\Lambda(A)=\left\{\lambda\left(A_{i i}\right) ; \lambda\left(A_{i i}\right) \geq \lambda\left(A_{j j}\right) \text { if } j \longrightarrow i\right\}
$$

Corollary: Every matrix has at most n eigenvalues. i is called spectral if $\lambda\left(A_{i j}\right) \geq \lambda\left(A_{j j}\right)$ whenever $j \longrightarrow i$ All real numbers $\lambda \geq \min \Lambda(A)$ are "subeigenvalues", that is $A \otimes x \leq \lambda \otimes x$ for some $x \neq \varepsilon$.

Part II. Reachability of eigenspaces by matrix orbits

MULTI-PROCESSOR INTERACTIVE SYSTEM (MPIS)

Processors P_{1}, \ldots, P_{n} work interactively and in stages $x_{i}(r) \ldots$ starting time of the $r^{\text {th }}$ stage on processor P_{i} $(i=1, \ldots, n ; r=0,1, \ldots)$
$a_{i j} \ldots$ time P_{j} needs to prepare the component for P_{i}
$x_{i}(r+1)=\max \left(x_{1}(r)+a_{i 1}, \ldots, x_{n}(r)+a_{i n}\right)$
$(i=1, \ldots, n ; r=0,1, \ldots)$
$x_{i}(r+1)=\sum_{k}^{\oplus} a_{i k} \otimes x_{k}(r) \quad(i=1, \ldots, n ; r=0,1, \ldots)$
$x(r+1)=A \otimes x(r) \quad(r=0,1, \ldots)$
$A: x(0) \rightarrow x(1) \rightarrow x(2) \rightarrow \ldots$

MPIS: STEADY REGIME

Given $x(0)$, will the MPIS reach a steady regime (that is, will it move forward in regular steps)?
Equivalently, is there a λ and an r_{0} such that

$$
\begin{gathered}
x(r+1)=\lambda \otimes x(r) \quad\left(r \geq r_{0}\right) ? \\
x(r+1)=A \otimes x(r) \quad(r=0,1, \ldots)
\end{gathered}
$$

Steady regime is reached if and only if for some λ and $r, x(r)$ is a solution to

$$
A \otimes x=\lambda \otimes x
$$

Since

$$
x(r)=A \otimes x(r-1)=A^{2} \otimes x(r-2)=\ldots=A^{r} \otimes x(0)
$$

a steady regime is reached if and only if $A^{r} \otimes x(0)$ "hits" an eigenvector of A for some r.

Reachability

Reachability of an eigenspace: Given $A \in \overline{\mathbb{R}}^{n \times n}$ and an $x \in \overline{\mathbb{R}}^{n}$, $x \neq \varepsilon$, is there a k such that $A^{k} \otimes x$ is an eigenvector of A ?

Various applications - a recent one:
Brackley, Broomhead, Romano, Thiel: Max-Plus Model of Ribosome Dynamics During mRNA Translation, 2011

Attraction set

Matrix orbit with starting vector x :
$A \otimes x, A^{2} \otimes x, \ldots, A^{k} \otimes x, \ldots$
Attraction set:

$$
\begin{aligned}
\operatorname{Attr}(A)= & \left\{x ;(\exists k) A^{k} \otimes x \in V(A)\right\} \\
& V(A) \subseteq \operatorname{attr}(A)
\end{aligned}
$$

Reachability

Cyclicity of a matrix

Cyclicity (index of imprimitivity) of a strongly connected digraph $=$ g.c.d. of the lengths of its cycles
Cyclicity of a digraph $=$ I.c.m. of cyclicities of its SCC Let $A \in \overline{\mathbb{R}}^{n \times n}$
C_{A}... critical digraph of A
Cyclicity of a matrix A : $\sigma(A)=$ cyclicity of C_{A}
A is primitive if $\sigma(A)=1$

Cyclicity Theorem

Cyclicity Theorem (Cohen et al 1985)
For every irreducible matrix $A \in \overline{\mathbb{R}}^{n \times n}$ the cyclicity of A is the period of A, that is, the smallest natural number p for which there is an integer $T(A)$ such that

$$
A^{r+p}=(\lambda(A))^{p} \otimes A^{r}
$$

for every $r \geq T(A)$
$T(A)$... transient of A

Cyclicity Theorem

For A irreducible:

$$
A^{r+\sigma}=(\lambda(A))^{\sigma} \otimes A^{r}, r \geq T(A)
$$

For any A (irreducible or not): $\lambda\left(A^{k}\right)=(\lambda(A))^{k}$ for every integer $k \geq 0$
\therefore For A irreducible:

$$
A^{\sigma} \otimes\left(A^{r} \otimes x\right)=\lambda\left(A^{\sigma}\right) \otimes\left(A^{r} \otimes x\right), \quad r \geq T(A)
$$

Corollary
If A is irreducible then $(\forall x \neq \varepsilon) A^{r} \otimes x \in V\left(A^{s}\right)$ for some r and $s \leq \sigma(A)$
Reachability asks about $s=1$

Reachability for irreducible matrices

Theorem (Nachtigall, 1997): Let $A \in \overline{\mathbb{R}}^{n \times n}$ be irreducible. Critical rows and columns of A^{r} are periodic for $r \geq n^{2}$, that is for all $(i, j) \in\left(N_{c}(A) \times N\right) \cup\left(N \times N_{c}(A)\right)$ we have:

$$
a_{i j}^{(r+\sigma)}=(\lambda(A))^{\sigma} \otimes a_{i j}^{(r)}
$$

Theorem (Sergeev, 2009): Let $A \in \overline{\mathbb{R}}^{n \times n}$ be irreducible and definite. Then for every $r \geq T(A)$ and $k=1, \ldots, n$ coefficients $\alpha_{i} \in \overline{\mathbb{R}}\left(i \in N_{c}(A)\right)$ such that

$$
A_{k .}^{r}=\sum_{i \in N_{c}(A)}^{\oplus} \alpha_{i} \otimes A_{i .}^{r} .
$$

can be found in $O\left(n^{3}\right)$ time.

Reachability for irreducible matrices

Corollary: If A is irreducible and definite then A^{r} for any $r \geq T(A)$ can be found in $O\left(n^{3} \log n\right)$ time (but not r)
\therefore Reachability of $V\left(A^{s}\right)$ for any s for A irreducible and definite, and any x can be checked in $O\left(n^{3} \log n\right)$ time

Reachability for reducible matrices

REACHABILITY: Given $A \in \overline{\mathbb{R}}^{n \times n}$, its eigenvalue λ and $x \in \overline{\mathbb{R}}^{n}$, is there a k such that $z=A^{k} \otimes x$ is an eigenvector with eigenvalue λ ? That is $A \otimes z=\lambda \otimes z$.
Now A reducible - in a Frobenius Normal Form:

$A_{i i}$ irreducible may be 1×1 matrix (ε)... "trivial" - exclude at first

Reachability for reducible matrices

For any $x \in \overline{\mathbb{R}}^{n}$ denote

$$
\begin{aligned}
J(x) & =\left\{j \in R ; x\left[N_{j}\right] \neq \varepsilon\right\} \\
C(x) & =\left\{i \in R ;(\exists j \in J(x)) N_{i} \longrightarrow N_{j}\right\}
\end{aligned}
$$

$N_{i}, i \in J(x)$ is final in $C(x)$ if $N_{i} \longrightarrow N_{j}$ is not true for any $j \in J(x), j \neq i$.
If $y=A \otimes x$ then

$$
y\left[N_{i}\right]=\sum_{j \in R}^{\oplus} A_{i j} \otimes x\left[N_{j}\right] \text { for every } i \in R .
$$

Suppose N_{i} is final in $C(x)$ then

$$
y\left[N_{i}\right]=A_{i i} \otimes x\left[N_{i}\right]
$$

Reachability for reducible matrices

If N_{i} is final in $C(x)$ then

$$
y\left[N_{i}\right]=A_{i i} \otimes x\left[N_{i}\right]
$$

[If $B \neq \varepsilon$ is irreducible and $v \neq \varepsilon$ then $B \otimes v \neq \varepsilon$]
$\therefore y\left[N_{i}\right] \neq \varepsilon$ (since $A_{i i} \neq \varepsilon$)
Proposition: Final classes in $C(x)$ and $C(y)$ coincide
Corollary: If $A \otimes z=\lambda \otimes z$ and $z=A^{k} \otimes x$ for some k then the final classes in $C(x)$ and $C(z)$ coincide and

$$
z\left[N_{i}\right]=A_{i i}^{k} \otimes x\left[N_{i}\right]
$$

for any final class N_{i} in $C(x)$

Reachability for reducible matrices

$A \otimes z=\lambda \otimes z$ blockwise:

$$
\sum_{j \in R}^{\oplus} A_{i j} \otimes z\left[N_{j}\right]=\lambda \otimes z\left[N_{i}\right] \text { for every } i \in R
$$

If N_{i} is final in $C(z)$:

$$
A_{i i} \otimes z\left[N_{i}\right]=\lambda \otimes z\left[N_{i}\right]
$$

\therefore If N_{i} final in $C(x)$ then $x\left[N_{i}\right] \in \operatorname{attr}\left(A_{i i}\right)$
This is can be checked in $O\left(n^{3} \log n\right)$ time
We may assume that a periodic regime for all final classes has been reached

Reachability for reducible matrices

If $A \otimes z=\lambda \otimes z$, and $z\left[N_{i}\right] \neq \varepsilon$ then
$z\left[N_{i}\right]$ is finite,
$\lambda\left(A_{i i}\right) \leq \lambda$ and
$N_{i} \longrightarrow N_{j}$, where $\lambda\left(A_{j j}\right)=\lambda$
in particular, $\lambda\left(A_{i i}\right)=\lambda$ if N_{i} is final in $C(z)$
We have already seen that $x\left[N_{i}\right] \neq \varepsilon \Longrightarrow z\left[N_{i}\right] \neq \varepsilon$ if $z=A^{k} \otimes x$ so a necessary reachability condition is:

$$
x\left[N_{i}\right] \neq \varepsilon \Longrightarrow \lambda\left(A_{i i}\right) \leq \lambda
$$

Reachability for reducible matrices

From now on assume that a periodic regime for all final classes has been reached $(z=x)$
We may also assume that $\lambda=0$
\therefore for any final class $x\left[N_{i}\right]$:

$$
A_{i i} \otimes x\left[N_{i}\right]=x\left[N_{i}\right]
$$

Reachability for reducible matrices

Checking the non-final classes - explanation for $r=2$:

$$
A=\left(\begin{array}{cc}
A_{11} & \varepsilon \\
A_{21} & A_{22}
\end{array}\right), x=\binom{x_{1}}{x_{2}}
$$

$A_{11} \otimes x_{1}=x_{1}$
Without loss of generality: $A_{21} \neq \varepsilon$ and $x_{1} \neq \varepsilon$
$\therefore \lambda\left(A_{22}\right) \leq 0$
Denote $x^{0}=x$ and

$$
x^{k}=A^{k} \otimes x^{0}=\binom{x_{1}^{k}}{x_{2}^{k}}
$$

Since $x_{1}^{k}=x_{1}^{0}$ for every k we only need to check whether x_{2}^{k} is stationary (\otimes omitted):

$$
x_{2}^{k}=A_{21} x_{1}^{0} \oplus A_{22} x_{2}^{k-1}=\ldots
$$

Reachability for reducible matrices

Since $x_{1}^{k}=x_{1}^{0}$ for every k we only need to check whether x_{2}^{k} is stationary:

$$
\begin{aligned}
x_{2}^{k}= & A_{21} x_{1}^{0} \oplus A_{22} x_{2}^{k-1} \\
= & A_{21} x_{1}^{0} \oplus A_{22}\left(A_{21} x_{1}^{0} \oplus A_{22} x_{2}^{k-2}\right) \\
& \ldots \\
= & \left(I \oplus \ldots \oplus A_{22}^{k-1}\right) A_{21} x_{1}^{0} \oplus A_{22}^{k} x_{2}^{0} \\
= & A_{22}^{*} A_{21} x_{1}^{0} \oplus A_{22}^{k} x_{2}^{0}
\end{aligned}
$$

$v=A_{22}^{*} A_{21} x_{1}^{0} \quad \ldots$ constant finite vector for $k \geq n-1$
If $\lambda\left(A_{22}\right)<0$ then $A_{22}^{k} x_{2}^{0} \longrightarrow-\infty$ and so $x_{2}^{k}=A_{22}^{*} A_{21} x_{1}^{0}$ for k large
If $\lambda\left(A_{22}\right)=0$:
A_{22} is irreducible and definite periodic regime of A_{22} can be found in polynomial time

Reachability for reducible matrices

For $k \geq T\left(A_{11}\right)$ (unknown):

$$
A^{k} \otimes x=\left(\begin{array}{cc}
A_{11}^{k} & \varepsilon \\
A_{22}^{*} A_{21} & A_{22}^{k}
\end{array}\right) \otimes x
$$

$A_{11}^{k+1} \otimes x_{1}=A_{11}^{k} \otimes x_{1}$
A_{11}^{k} can be found in polynomial time (for any $k \geq T\left(A_{11}\right)$)
$A_{22}^{k+\sigma} \otimes x_{2}=A_{22}^{k} \otimes x_{2}$ where $\sigma=\sigma\left(A_{22}\right), k \geq T\left(A_{22}\right)$
A_{22}^{k} can be found in polynomial time (for any $k \geq T\left(A_{22}\right)$)
$\therefore A^{k+s} \otimes x=A^{k} \otimes x$ for some $s \leq \sigma$ and
$k \geq \max \left(T\left(A_{11}\right), T\left(A_{22}\right), n\right)$
A^{k} can be found in polynomial time (for any k large)

Reachability for reducible matrices

Lemma: If there exist natural numbers s and T such that
$A^{t+s} \otimes x=A^{t} \otimes x$ for every $t \geq T$ then

$$
A^{r+1} \otimes x=A^{r} \otimes x
$$

for a natural number $r \geq T$ if and only if

$$
A^{k+1} \otimes x=A^{k} \otimes x
$$

for every natural number $k \geq T$.
Checking reachability thus reduces to checking

$$
A^{k+1} \otimes x=A^{k} \otimes x
$$

for $k \geq \max \left(T\left(A_{11}\right), T\left(A_{22}\right), n\right)$.

The role of trivial blocks

ε	ε	ε	ε	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & \hline \varepsilon \\ & 0 \end{aligned}$		$\begin{aligned} & \varepsilon \\ & \mathcal{\varepsilon} \end{aligned}$		ε		ε
0	ε	ε	ε									
ε	0	ε	ε	0		0		0		ε		
ε	ε	0	ε	0		0		0		0		

0	ε	\mathcal{E}	ε	0		0		0		0		0	
0	ε	\mathcal{E}	ε	ε		0		0		0		0	
\mathcal{E}	0	ε	ε	ε		ε		0		0		0	
\mathcal{E}	ε	0	\mathcal{E}	ε		ε		ε		0		0	

Reachability for reducible matrices

Proposition: Let $z^{(k)}=A^{k} \otimes x, k=1,2, \ldots$. If N_{i} is trivial (that is $\left.A_{i i}=(\varepsilon)\right)$ then
either $z^{(k)}\left[N_{i}\right]=\varepsilon$ for all $k \geq 2 n$
or $z^{(k)}\left[N_{i}\right] \neq \varepsilon$ for all $k \geq 2 n$
Proposition: For every $k \geq 2 n$ every i the class $z^{(k+1)}\left[N_{i}\right]$ is final if and only if $z^{(k)}\left[N_{i}\right]$ is final.
Corollary: For solving REACHABILITY it is sufficient to first move $x \longrightarrow A^{2 n} \otimes x$

Strongly and weakly stable matrices

$V(A) \subseteq \operatorname{attr}(A) \subseteq \overline{\mathbb{R}}^{n}-\{\varepsilon\}$
Two extremes:
$\operatorname{attr}(A)=\overline{\mathbb{R}}^{n}-\{\varepsilon\} \quad \ldots$ A strongly stable (robust)
$\operatorname{attr}(A)=V(A) \quad \ldots$ A weakly stable

Strong stability (robustness)

If A is irreducible and primitive then by the Cyclicity Theorem:
$A^{k+1}=\lambda(A) \otimes A^{k}$ for k large
$A^{k+1} \otimes x=\lambda(A) \otimes A^{k} \otimes x$ for k large and any $x \in \overline{\mathbb{R}}^{n}$
A irreducible: A is robust $\Longleftrightarrow A$ is primitive
Robustness criterion for reducible matrices (PB \& S.Gaubert \& RACG 2009):
A with FNF classes $N_{1}, \ldots N_{r}$ and no ε column is robust if and only if
All nontrivial classes are primitive and spectral
$(\forall i, j)$ If N_{i}, N_{j} are non-trivial, $N_{i} \nrightarrow N_{j}$ and $N_{j} \nrightarrow N_{i}$ then

$$
\lambda\left(A_{i i}\right)=\lambda\left(A_{j j}\right)
$$

Strong stability (robustness)

Reduced digraph of a robust matrix with $\lambda_{1}<\lambda_{2}<\lambda_{3}<\lambda_{4}$:

Weakly stable matrices

A weakly stable: $\operatorname{attr}(A)=V(A)$
Let A be irreducible
$V(A)=\left\{x \in \overline{\mathbb{R}}^{n} ; A \otimes x=\lambda(A) \otimes x, x \neq \varepsilon\right\} \quad .$. eigenvectors
$V_{*}(A)=\left\{x \in \overline{\mathbb{R}}^{n} ; A \otimes x \leq \lambda(A) \otimes x, x \neq \varepsilon\right\} \ldots$ subeigenvectors
$V^{*}(A)=\left\{x \in \overline{\mathbb{R}}^{n} ; A \otimes x \geq \lambda(A) \otimes x, x \neq \varepsilon\right\} \ldots$
supereigenvectors

Weakly stable matrices

$$
\begin{aligned}
& V(A) \subseteq V_{*}(A) \subseteq \operatorname{Attr}(A) \\
& V(A) \subseteq V^{*}(A) \subseteq \operatorname{Attr}(A)
\end{aligned}
$$

A weakly stable $\Longrightarrow V(A)=V^{*}(A)=V_{*}(A)=\operatorname{Attr}(A)$

Weakly stable matrices

Let A be irreducible.
A is weakly stable $\Longleftrightarrow C_{A}$ is a Hamilton cycle in D_{A}.

Weakly stable matrices

A is weakly stable if and only if every spectral class of A is initial and weakly stable

Visualisation

$A=\left(a_{i j}\right) \in \overline{\mathbb{R}}^{n \times n}$ is called visualised if
$a_{i j} \leq 0$ for all i, j
$a_{i j}=0$ if $(i, j) \in E_{c}$
If $\lambda(A)>\varepsilon$ and x is a finite eigenvector then $B=X^{-1} \otimes A_{\lambda} \otimes X$ is visualised, where $X=\operatorname{diag}\left(x_{1}, . ., x_{n}\right)$
There is a bijection between $V(A)$ and $V(B)$ and
$\lambda(B)=\lambda\left(A_{\lambda}\right)=0$
\therefore There is no loss of generality to assume that A is visualised and definite.
P. Butkovic: Max-linear Systems: Theory and Algorithms (Springer Monographs in Mathematics, Springer-Verlag 2010)

For A irreducible and definite:

$$
A^{r+\sigma}=A^{r} \text { for all } r \geq T(A)
$$

Corollary 1: Let A be irreducible and definite and $r \geq T(A)$. Then $A^{r} \otimes x=A^{r+p} \otimes x$ is equivalent to its critical subsystem for $r \geq n^{2}$.

Example: If

$$
A=\left(\begin{array}{rrr}
-2 & 1 & -3 \\
3 & 0 & 3 \\
\hline 5 & 2 & 1
\end{array}\right)
$$

then

$$
\begin{aligned}
\lambda(A) & =\max \{-2,0,1,2,1,5 / 2,3,2 / 3\}=3 \\
\sigma & =(1,2,3) \text { is critical }
\end{aligned}
$$

Eigenproblem: The principal eigenvalue and eigenvectors

$$
A=\left(\begin{array}{c|ccccc}
7 & 9 & 5 & 5 & 3 & 7 \\
7 & 5 & 2 & 7 & 0 & 4 \\
8 & 0 & 3 & 3 & 8 & 0 \\
7 & 2 & 5 & 7 & 9 & 5 \\
4 & 2 & 6 & 6 & 8 & 8 \\
3 & 0 & 5 & 7 & 1 & 2
\end{array}\right), \quad \lambda(A)=8
$$

Critical cycles: $(1,2,1),(5,5),(4,5,6,4)$
Node sets of all strongly connected components:
$\{1,2\},\{3\},\{4,5,6\}$
Three strongly connected components, one of them trivial $N_{c}=\{1,2,4,5,6\}$

An example

$$
\begin{aligned}
& \left(\begin{array}{rrr}
-2 & 2 & 2 \\
-5 & -3 & -2 \\
\varepsilon & \varepsilon & 3 \\
-3 & -3 & 2 \\
1 & 4 & \varepsilon
\end{array}\right) \otimes\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{r}
3 \\
-2 \\
1 \\
0 \\
5
\end{array}\right) \\
& \left(\begin{array}{rrr}
-5 & -1 & -1 \\
\hline-3 & -1 & 0 \\
\hline \varepsilon & \varepsilon & 2 \\
\hline-3 & -3 & 2 \\
\hline-4 & -1 & \varepsilon
\end{array}\right) \otimes\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right) \\
& M_{1}=\{2,4\}, M_{2}=\{1,2,5\}, M_{3}=\{3,4\}
\end{aligned}
$$

$\bar{x}=(3,1,-2)^{T}$ is a solution since $\bigcup_{j=1,2,3} M_{j}=M$
$M_{2} \cup M_{3}=M$ hence the solution set is

$$
\left\{\left(x_{1}, x_{2}, x_{3}\right)^{T} \in \overline{\mathbb{R}}^{3} ; x_{1} \leq 3, x_{2}=1, x_{3}=-2\right\}
$$

$$
\underbrace{\left(\begin{array}{cccccc}
7 & 9 & 5 & 5 & 3 & 7 \\
7 & 5 & 2 & 7 & 0 & 4 \\
\hline 8 & 0 & 3 & 3 & 8 & 0 \\
7 & 2 & 5 & 7 & 9 & 5 \\
4 & 2 & 6 & 6 & 8 & 8 \\
3 & 0 & 5 & 7 & 1 & 2
\end{array}\right)}_{A}, \lambda(A)=8
$$

$\underbrace{\left(\begin{array}{rrrrrr}\boxed{0} & 1 & -1 & 0 & 1 & 1 \\ -1 & 0 & 2 & -1 & 0 & 0 \\ 0 & 1 & -1 & 0 & 1 & 1 \\ -1 & 0 & -1 & 0 & 1 & 1 \\ -2 & -1 & -2 & -1 & 0 & 0 \\ -2 & -1 & -2 & -1 & 0 & 0 \\ \hline\end{array}\right)}_{A_{\lambda}^{+}}$

$$
\begin{aligned}
& \underbrace{\left(\begin{array}{ccccccc}
7 & 9 & 5 & 5 & 3 & 7 \\
7 & 5 & 2 & 7 & 0 & 4 \\
8 & 0 & 3 & 3 & 8 & 0 \\
7 & 2 & 5 & 7 & 9 & 5 \\
4 & 2 & 6 & 6 & 8 & 8 \\
3 & 0 & 5 & 7 & 1 & 2
\end{array}\right)}_{A} \xrightarrow{-8} \underbrace{\left(\begin{array}{ccccccc}
-1 & 1 & -3 & -3 & -5 & -1 \\
\hline-1 & -3 & -6 & -1 & -8 & -4 \\
0 & -8 & -5 & -5 & 0 & -8 \\
-1 & -6 & -3 & -1 & 1 & -3 \\
-4 & -6 & -2 & -2 & 0 & 0 \\
-5 & -8 & -5 & -1 & -7 & -6
\end{array}\right)}_{A_{\lambda}} \\
& \underbrace{\left(\begin{array}{rrrrrr}
\hline 0 & 1 & -1 & 0 & 1 & 1 \\
-1 & 0 & 2 & -1 & 0 & 0 \\
0 & 1 & -1 & 0 & 1 & 1 \\
-1 & 0 & -1 & 0 & 1 & 1 \\
-2 & -1 & -2 & -1 & 0 & 0 \\
-2 & -1 & -2 & -1 & 0 & 0 \\
\hline
\end{array}\right.}_{A_{\lambda}^{+}} \longrightarrow\left(\begin{array}{rrrrrr}
0 & . & . & 0 & . & . \\
-1 & . & . & -1 & . & . \\
0 & . & . & 0 & . & . \\
-1 & . & . & 0 & . & . \\
-2 & . & . & -1 & . & . \\
-2 & . & . & -1 & . & .
\end{array}\right)
\end{aligned}
$$

Eigenproblem: The principal eigenvalue and eigenvectors

A basis of the principal eigenspace is e.g.
$\left\{g_{2}=(1,0, \varepsilon, \varepsilon)^{T}, g_{3}=(\varepsilon, \varepsilon, 0, \varepsilon)^{T}\right\}$

Finding all eigenvalues

$$
\begin{aligned}
& A=\left(\begin{array}{llll}
\begin{array}{|cc|c}
\hline 0 & 3 \\
5 & 1
\end{array} & & & \\
& & 4 & \\
& 0 & 3 & 1
\end{array} \quad(\text { blank }=\varepsilon)\right. \\
& \lambda\left(A_{11}\right)=4, \lambda\left(A_{22}\right)=4, \lambda\left(A_{33}\right)=3, \lambda\left(A_{44}\right)=5, r=4 \\
& \lambda(A)=5 \\
& \Lambda(A)=\{4,5\} \\
& N_{1}, N_{4} \text { are spectral (} N_{2} \text { is not) }
\end{aligned}
$$

Principal eigenspace

$$
\begin{aligned}
& \lambda(A)>\varepsilon \\
& A_{\lambda}=(\lambda(A))^{-1} \otimes A \\
& A^{+}=A \oplus A^{2} \oplus \ldots \oplus A^{n-1} \oplus A^{n} \\
& A \longrightarrow A_{\lambda}
\end{aligned}
$$

Principal eigenspace

$$
\begin{aligned}
& \lambda(A)>\varepsilon \\
& A_{\lambda}=(\lambda(A))^{-1} \otimes A \\
& A^{+}=A \oplus A^{2} \oplus \ldots \oplus A^{n-1} \oplus A^{n} \\
& A \longrightarrow A_{\lambda} \longrightarrow\left(A_{\lambda}\right)^{+}
\end{aligned}
$$

Principal eigenspace

$$
\begin{aligned}
& \lambda(A)>\varepsilon \\
& A_{\lambda}=(\lambda(A))^{-1} \otimes A \\
& A^{+}=A \oplus A^{2} \oplus \ldots \oplus A^{n-1} \oplus A^{n} \\
& A \longrightarrow A_{\lambda} \longrightarrow\left(A_{\lambda}\right)^{+} \quad\left(\text { briefly } A_{\lambda}^{+}\right)
\end{aligned}
$$

Principal eigenspace

If $\lambda(A)>\varepsilon$ then every column of A_{λ}^{+}with zero diagonal entry is an eigenvector of A with corresponding eigenvalue $\lambda(A)$ (principal eigenvector)
An essentially unique basis of $V(A, \lambda(A))$ (the principal eigenspace) can be obtained by taking exactly one principal eigenvector of A for each equivalence class in (N_{c}, \sim) If $A_{\lambda}^{+}=\left(g_{1}, \ldots, g_{n}\right)$ then $i \sim j$ if and only if $g_{i}=\alpha \otimes g_{j}, \alpha \in \mathbb{R}$ If A is irreducible then $V(A)=V(A, \lambda(A))$ and $V(A) \subseteq \mathbb{R}^{n}$

