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Abstract. We investigate connections between arithmetic properties of rings
and topological properties of their prime spectrum. Any property that the
prime spectrum of a ring may or may not have, defines the class of rings whose
prime spectrum has the given property. We ask whether a class of rings defined
in this way is axiomatizable in the model theoretic sense. Answers are provided
for a variety of different properties of prime spectra, e.g., normality or complete
normality, Hausdorffness of the space of maximal points, compactness of the
space of minimal points.
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1. Introduction

In commutative ring theory one studies the prime spectrum of a ring. This is
a functorial construction that associates a topological space Spec A with a ring A.
It serves at least two important purposes: Firstly, it is an invariant that encodes
information about the ring. Secondly, it helps translate algebraic information into
geometric language, and vice versa. This second aspect of prime spectra is the basis
of their application in algebraic geometry via schemes, where Spec A is equipped
with a structure sheaf (cf. Grothendieck’s EGA, or some introductory text about
algebraic geometry, such as [Ha]). Concerning the first aspect, the usefulness of
spectra as invariants depends to a large extent on understanding how properties of
a ring correspond to properties of its prime spectrum: Given a ring A with some
arithmetical property, does Spec A have a corresponding topological property?

In the present paper the converse question is addressed, i.e.: If Spec A has some
particular topological property, how is this property reflected in the arithmetic of
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A? Some of the most fundamental notions of commutative ring theory are instances
of the correspondence between arithmetic and topology; e.g., the property “SpecA
is irreducible” says that A modulo its nilradical is a domain (equivalently: if a·b = 0
then there is some k ∈ N such that ak = 0 or bk = 0); the property “Spec A has a
unique closed point” says that the non-units of A form an additive subgroup of A
(i.e., the ring is local); the property ”Spec A is connected” means that the ring has
only trivial idempotents.

Let P be a topological property that prime spectra may or may not have. We
ask whether the class R(P) of those rings whose prime spectrum has property P
is first order-axiomatizable in the language L = {+,−, ·, 0, 1} of rings. We are
interested in explicit arithmetical descriptions of the class R(P).

We focus on properties of spectra that are concerned with the space of maximal
ideals or with the space of minimal prime ideals, or with how these spaces sit inside
the full prime spectrum. Here is a selection:

• The spectrum is normal, i.e., every prime ideal is contained in a unique
maximal ideal, or

• the spectrum is completely normal, i.e., the set of prime ideals that
contain a given prime ideal form a chain with respect to inclusion, or

• The spectrum is inversely normal, i.e., every prime ideal contains a
unique minimal ideal, or

• the set of maximal points is a Hausdorff space, or
• the set of minimal points is a compact space.

Experience shows that spectra with these properties abound in real algebra.
Whenever we prove axiomatizability of a class of rings we also provide an explicit

set of axioms. But we do not develop a general method that decides upon input P
whether the class R(P) is elementary.

For each question there are two different variants: One may ask the question for
all rings or only for reduced rings. If the class of rings whose spectrum has property
P is axiomatizable then the same is clearly true for the class of reduced rings. This
is the case, for example, if P says that the spectrum is normal. On the other hand,
if P means that the spectrum is completely normal then neither the class of rings,
nor the class of reduced rings is axiomatizable. But if the prime spectrum has
only one point then the answers are different for all rings and for reduced rings:
Everybody knows that the class of reduced rings with only one prime ideal is the
class of fields, which is clearly an axiomatizable class. But the class of all rings
with only one prime ideal is not axiomatizable (cf. 6.8 and 6.7).

In section 11 a table summarizes our axiomatizability results, as well as some
well-known classical answers to the type of question we study. Most of the answers
that we present are new. Our answers are based upon a few key results and con-
structions. The first one is Theorem 4.3, which shows that the rings with normal
prime spectrum form an axiomatizable class. (This, in fact, is not a new result, cf.
[Co1], Theorem 4.1. We still include an extensive discussion of rings with normal
spectrum. The proofs seem to be new, the results, as well as their presentation, are
more comprehensive and play a key role later on the paper. More comments on the
literature are given in sections 4 and 5.) Without much additional effort this leads
to the fact that the classes of rings whose space of maximal ideals is Hausdorff,
or is Boolean, or is a pro-constructible subspace of the full prime spectrum are all
axiomatizable as well.
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In section 3 we introduce the notion of pseudo elementary classes of structures,
which is a more general notion than axiomatizability. If a class of structures is
known to be pseudo elementary then it is possible to prove or disprove axiomati-
zability via judiciously chosen numerical invariants. We shall apply the technique
several times. The basic procedure is always the same: First we associate subsets
of N with elements of the ring. Then, for each element, we form the infimum of this
set in N∪{ω,∞}, where N < ω < ∞. Thus, we have a numerical invariant for each
element of the ring, which is either in N or is ∞. Finally we associate a number in
N ∪ {ω,∞} with the ring by forming the supremum of the set of invariants of the
ring elements. Then the pseudo elementary class is axiomatizable if and only if the
invariants of the rings of the class have a uniform upper bound in N (cf. 3.2).

We use this method to show that the class of rings with completely normal prime
spectrum is not axiomatizable. In this case we denote the numerical invariant of
the ring A by CN(A). In 6.7 we show that for every axiomatizable class R of rings
with completely normal spectrum, there is an upper bound in N for all the CN(A),
A ∈ R. Then we construct a sequence of rings (An)n∈N such that Spec An is a
singleton and the CN(An) are an unbounded sequence of integers. Consequently,
no axiomatizable class of rings with completely normal prime spectrum contains
all the An. This also gives non-axiomatizability of the rings with only one prime
ideal, or of the rings with boolean spectrum, or of the rings with linearly ordered
spectrum.

The rings (An)n∈N are not reduced. But we use them to construct, in 6.11, a
sequence (Bn)n∈N of domains with exactly two prime ideals such that (CN(Bn))n∈N
is an unbounded sequence of integers. This then proves that the class of reduced
rings with completely normal spectrum is non-axiomatizable as well.

These explanations account for many entries in the table of section 11. In section
7, we show that the class of all rings with inversely normal spectrum is not axiom-
atizable, whereas the class of all reduced rings with inversely normal spectrum is
axiomatizable. (Recall that Spec A is inversely normal if every prime ideal of A
contains a unique minimal prime ideal.)

The most difficult issue that remains is the question of compactness of the mini-
mal prime spectrum. The model theoretic method for proving non-axiomatizability
is the same as before: We associate a numerical invariant AS(A) ∈ N∪{ω,∞} with
every ring A (cf. 10.1) as follows: For a ∈ A we define the annihilator size AS(a)
of a as the infimum (formed in N ∪ {ω,∞}) of the set

{k ∈ N | ∃b1, . . . , bk ∈ Ann(a) : Ann(a, b1, . . . , bk) = (0)}
Then we define AS(A) := sup{AS(a) ∈ N ∪ {ω} ∪ {∞} | a ∈ A}, hence AS(A) = ω
if and only if {AS(a) | a ∈ A} is an unbounded subset of N. It turns out that (cf.
10.2)

• Spec A has compact minimal spectrum if and only if AS(A) ≤ ω.
• Every axiomatizable class R of rings with compact minimal spectrum must

have a common upper bound in N for all the invariants AS(A), A ∈ R.

In section 10 we modify and extend a construction due to Quentel to produce a
ring A with AS(A) = ω (cf. 10.16). It follows that A has compact minimal prime
spectrum, but there is no axiomatizable class of rings with compact minimal prime
spectrum that contains the ring A. There is an ultrapower of A whose minimal
prime spectrum is not compact.



4 NIELS SCHWARTZ, MARCUS TRESSL

2. Preliminaries on spectral spaces

In this section we set up notation and terminology for spectra and present some
results that will be used throughout. The theory of spectral spaces was started by
Hochster with his paper [Hoc]. Section 2 of [Tr] is a convenient place to look up
more basic notions and facts.

Notation 2.1. Let X be a topological space. If x, y ∈ X we write x Ã y if y ∈ {x}
and we say y is a specialization of x or x is a generalization of y. Moreover we
define

◦
K(X) := {U ⊆ X | U is quasi-compact and open}
K(X) := {X \ U | U ∈ ◦

K(X)}
K(X) := the Boolean algebra of subsets of X generated by

◦
K(X);

the elements of K(X) are called constructible

Xmin := {x ∈ X | x does not have a proper generalization}
Xmax := {x ∈ X | x does not have a proper specialization}
Xcon := the set X equipped with the constructible topology,

which, by definition, has K(X) as a basis;
the closed subsets of Xcon are called proconstructible

Y
con

:= the closure of a subset Y ⊆ X in the constructible topology
Xinv := the set X equipped with the inverse topology,

which, by definition, has
◦
K(X) as a basis of closed sets

We emphasize that, for a subset Y ⊆ X, the set Y max is the set of maximal points
of the subspace Y of X. In general Y max is different from Xmax ∩ Y . The same
clarification applies to Y min.

For any subset Y ⊆ X, let

Gen(Y ) := {x ∈ X | x Ã y for some y ∈ Y }
be the set of generalizations of Y in X; we refer to this set as the generic closure
of Y .

For any ring A let Spec A be the prime spectrum of A. We use the stan-
dard notations V (S) = {p ∈ Spec A | S ⊆ p} (S ⊆ A) and V (a1, ..., an) =
V ({a1, ..., an}) (a1, ..., an ∈ A). Moreover, for each element a ∈ A we define
D(a) = {p ∈ Spec A | a /∈ p} = Spec A \ V (a). The sets V (a) are the princi-
pal closed subsets, the sets D(a) are the principal open subsets of Spec A.

Remark 2.2. Let Y be a subset of an arbitrary topological space X.
(i) Gen(Y ) =

⋂{U ⊆ X | U open and Y ⊆ U}.
(ii) Gen(Y ) is generically closed, i.e., closed under generalization.
(iii) Gen(Y )max = Y max.
(iv) Gen(Y ) ⊇ Gen(Y max).
(v) Gen(Y ) = Gen(Y max) if and only if Y ⊆ Gen(Y max).
(vi) If Y is T0 then the following are equivalent:

(a) Y is quasi-compact.
(b) Gen(Y ) is quasi-compact.
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(c) Y max is quasi-compact and Y ⊆ Gen(Y max).
In particular, every point in a quasi-compact T0-space specializes to a max-
imal point in that space.

Proof. (i)-(v) are obvious. We give the proof of (vi). (a) and (b) are equivalent by
(i). (c)⇒(a). First note that Y ⊆ Gen(Y max) means Gen(Y ) = Gen(Y max) (by
(v)). Then we apply the implication ”(a)⇒(b)” to the quasi-compact set Y max.

(a)⇒(c). Let y ∈ Y . We show y ∈ Gen(Y max). By Zorn there is a maximal chain
Z ⊆ Y in the set of specializations of y. The intersection of finitely many sets of the
form {z} ∩ Y , with z ∈ Z, is non empty. Since Y is quasi-compact the intersection
of all these sets is nonempty, hence contains a point z0. This is a maximal point of
Z (as Y is T0). However, Z is a maximal specialization chain in Y , thus z0 ∈ Y max.
This shows Y ⊆ Gen(Y max), in other words: Gen(Y ) = Gen(Y max), and, using the
equivalence ”(a)⇔(b)”, we conclude that Y max is quasi-compact. ¤

Recall from [Hoc] that a topological space X is called spectral if X is quasi-

compact, T0,
◦
K(X) is a basis of the topology and is closed under finite intersections,

and each closed irreducible subset A of X has a (unique) generic point x ∈ A, i.e.,
{x} = A. A map between spectral spaces is called a spectral map if preimages of
quasi-compact open sets are quasi-compact open.

We mention that a subset Y of X is proconstructible if and only if Y is a spectral
subspace of X, i.e., Y together with the topology inherited from X is spectral and
the inclusion is a spectral map.

Proposition 2.3. Let X be a spectral space and let Y ⊆ X. The following are
equivalent.

(i) Y is quasi-compact.
(ii) Gen(Y ) is quasi-compact.
(iii) Y max is quasi-compact and Y ⊆ Gen(Y max).
(iv) Gen(Y ) is proconstructible.

(v) Gen(Y ) =
⋂{U ∈ ◦

K(X) | Y ⊆ U}.
Proof. The implications (v)⇒(iv)⇒(iii) are trivial; items (i), (ii), (iii) are equivalent
in every T0-space by 2.2(vi). Hence it remains to show (i)⇒(v). Let Y be quasi-

compact. Clearly Gen(Y ) ⊆ ⋂{U ∈ ◦
K(X) | Y ⊆ U}. Conversely, pick x ∈

X \Gen(Y ). For each y ∈ Y we have x 6Ã y. Since
◦
K(X) is a basis of the topology

of X, there is some Uy ∈
◦
K(X) with x 6∈ Uy 3 y. Therefore Y is covered by all the

Uy and since Y is quasi-compact there is some U ∈ ◦
K(X) with x 6∈ U ⊇ Y . ¤

Applying 2.3 to X and Xinv gives the following consequences, which can also be
found in [Tr], Cor. (2.7) as a consequence of the so-called separation lemma ([Tr],
Thm. (2.6)).

Corollary 2.4. Let X be a spectral space and let Y, Z ⊆ X. Then

(i) Y is quasi-compact in the inverse topology if and only if Y =
⋃

y∈Y {y}.
(ii) If Y is closed, Z is quasi-compact and disjoint from Y , then there is a

closed, constructible subset A of X with Y ⊆ A and A ∩ Z = ∅.
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(iii) If Y and Z are quasi-compact in the inverse topology and if there are no
points y ∈ Y , z ∈ Z that have a common specialization in X, then there
are closed and constructible subsets A,B of X with Y ⊆ A, Z ⊆ B and
A ∩B = ∅.

(iv) If Y and Z are quasi-compact and if there are no points y ∈ Y , z ∈ Z which
have a common generalization in X, then there are open quasi-compact
subsets U, V of X with Y ⊆ U , Z ⊆ V and U ∩ V = ∅.

If X is any topological space and Y ⊆ X, then int(Y ) denotes the interior of Y .

Lemma 2.5. Let X be a spectral space and let x ∈ X. The following are equivalent.
(i) x ∈ Xmin.
(ii) If V ∈ K(X) with x ∈ V , then x ∈ int(V ).
(iii) If Y ⊆ X is open in the constructible topology with x ∈ Y , then x ∈ int(Y )

(w.r.t. the spectral topology).

Proof. (iii)⇒(ii)⇒(i) are obvious. We prove (i)⇒(iii). Let the subset Y ⊆ X be
open in the constructible topology and let x ∈ Y . If x 6∈ int(Y ), then for all

U ∈ ◦
K(X) with x ∈ U we have U ∩ (X \ Y ) 6= ∅. Since Xcon is compact we get an

element y ∈ ⋂
x∈U∈ ◦K(X)

U ∩ (X \ Y ). This shows that y is a proper generalization

of x, a contradiction to (i). ¤
Corollary 2.6. Let X be a spectral space.

(i) If Y ⊆ X is open in the constructible topology, then Y ∩Xmin = int(Y ) ∩
Xmin. In particular, the topologies induced by X and Xcon on Xmin are the
same.

(ii) If Y ⊆ X is proconstructible, then Xmin ⊆ Y iff Y is dense in X.

Proof. (i) holds by 2.5(iii).
(ii). Obviously we have ⇒. Conversely if Y is dense in X, then X \Y has empty

interior, so for each x ∈ Xmin we have x 6∈ X \ Y , by 2.5(i)⇒(iii). ¤
It is a consequence of 2.6 that, in a spectral space X, the subspace of minimal

points is always a Tychonoff space (i.e., a completely regular space, or , equivalently,
a subspace of a compact Hausdorff space). This is so, since by 2.6, Xmin is a
subspace of Xcon. In particular, if a spectral space does not have any proper
specializations, then Xmin = Xcon, and the space is boolean.

Corollary 2.7. Let X be a spectral space. Then Xmin is quasi-compact (hence
compact) if and only if Xmin is proconstructible, if and only if

Xmin =
⋂
{U ∈ ◦

K(X) | U is dense in X}.

Proof. By 2.6, we know that for every U ∈ ◦
K(X), Xmin ⊆ U iff U is dense in X.

Therefore the corollary follows from 2.3, (i)⇔(iv)⇔(v). ¤
Lemma 2.8. Let Y be a subset of a spectral space X. Then the minimal points of
the closure of Y are the same as the minimal points of the constructible closure of
Y . In particular, if A is a ring, X = SpecA and Y is a set of prime ideals, then
the minimal points of V (I), I :=

⋂
p∈Y p, are contained in the constructible closure

of Y (note that Y is V (I)).
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Proof. The constructible topology is finer than the spectral topology. Therefore
Y

con ⊆ Y . Using 2.4(i) we conclude that
⋃

y∈Y
min {y} = Y = Y

con
=

⋃
y∈Y

con {y} =
⋃

y∈(Y
con)min {y}.

It follows that Y
min

=
(
Y

con
)min

. ¤

3. Pseudo elementary classes

We shall use basic notions from model theory (cf. [Ho]).

Definition 3.1. Let L be a first order language and let C be a class of L-structures.
Let Th(C) be the theory of C, i.e., Th(C) is the set of all L-sentences, that are valid
in all structures from C. We call C pseudo elementary if there is an index set
I and L-formulas ϕi,k(x1, ..., xn(i), y1, ..., yl(i,k)) (i ∈ I, k ∈ N) with, at most, the
free variables x1, ..., xn(i), y1, ..., yl(i,k), such that for every model M of Th(C) we
have M ∈ C if and only if for each i ∈ I and all ā ∈ Mn(i) there are k ∈ N and
some b̄ ∈ M l(i,k) such that M |= ϕi,k(ā, b̄).

The formulas ϕi,k (i ∈ I, k ∈ N) are called witnesses of C.
We shall write x̄i, ȳi,k for the tuples (x1, ..., xn(i)), (y1, ..., yl(i,k)), respectively. If

I is a singleton, we suppress the subscript i.

For example, the class of finite L-structures is pseudo elementary, where I is a
singleton and the witnesses

ϕk = ∃v1, ..., vk ∀u u = v1 ∨ ... ∨ u = vk,

have no free variables.

Proposition 3.2. Let C be a pseudo elementary class of L-structures with wit-
nesses ϕi,k(x̄i, ȳi,k) (i ∈ I, k ∈ N). The following are equivalent:

(i) C is axiomatizable, in other words every model of Th(C) is in C.
(ii) C is closed under (countable) ultraproducts.
(iii) For every i ∈ I, there is a natural number K such that for every M ∈ C

and every ā ∈ Mn(i) there are some k ≤ K and some b̄ ∈ M l(i,k) with
M |= ϕi,k(ā, b̄).

Proof. This holds by basic model theory; for the convenience of the reader we
include a proof:
(iii)⇒(i). Condition (iii) says that the sentences

∀x̄i∃ȳi,1, ..., ȳi,K ϕi,1(x̄i, ȳi,1) ∨ ... ∨ ϕi,K(x̄i, ȳi,K) (i ∈ I)

are in Th(C). As C is pseudo elementary, it follows that every model of Th(C) is in
C.

(i)⇒(ii) holds by Corollary 9.5.10 of [Ho]. It remains to show (ii)⇒(iii). Fix
i ∈ I and suppose there is no bound K as in (iii). For each K ∈ N pick some
MK ∈ C and ā(K) ∈ M

n(i)
K such that

MK |= ∀ȳi,k¬ϕi,k(ā(K), ȳi,k) (1 ≤ k ≤ K).

Let M =
∏

K MK/U, where U is a nonprincipal ultrafilter on N. Let ā :=
(ā(K))/U ∈ M n(i). By (ii), M is in C, hence there are k ∈ N and some b̄ =
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(b̄(K))/U ∈ M l(i,k) such that M |= ϕi,k(ā, b̄) (where each b̄(K) is a tuple from
M

l(i,k)
K ). Since U is nonprincipal there is some K ≥ k such that

MK |= ϕi,k(ā(K), b̄(K)),

which contradicts the choice of MK and ā(K). ¤
Observe that (ii) does not imply (i) in Proposition 3.2, without the assumption

that C is pseudo elementary; e.g. if C is the class of all uncountable structures in a
countable language, then (ii) holds, but not (i).

Note that every elementary class C is also pseudo elementary. Every sequence
ϕk = ϕk(x̄, ȳk) of formulas (x̄ of length n, ȳk of length l(k), as above) trivially
serves as a sequence of witnesses if it satisfies the following condition:

(∗) For each M ∈ C and for all ā ∈ Mn there are
k ∈ N and a tuple b̄ ∈ M l(k) such that M |= ϕk(ā, b̄).

We shall use the following consequence of 3.2:

Corollary 3.3. Let C be an elementary class of L-structures and let (ϕk(x̄, ȳk))k∈N
be a sequence of L-formulas that satisfies condition (∗). Then there is some K ∈ N
such that for every M ∈ C and every ā ∈ Mn there are some k ≤ K and b̄ ∈ M l(k)

with M |= ϕk(ā, b̄). ¤
The example of finite structures above shows that the existence of bounds K

as in 3.2(iii) that depend on the selected structure, but are independent from the
choice of tuples ā ∈ M x̄, does not imply that C is axiomatizable. The following
proposition characterizes those situations where a bound exists for a particular
structure from C.
Proposition 3.4. Let C be a pseudo elementary class of L-structures with wit-
nesses ϕi,k(x̄i, ȳi,k) (i ∈ I, k ∈ N). The following are equivalent for every L-
structure M .

(i) M ∈ C, and for each i ∈ I there is some K ∈ N such that for all ā ∈ Mn(i)

there are k ≤ K and some b̄ ∈ M l(i,k) with M |= ϕi,k(ā, b̄).
(ii) Every (countable) ultrapower of M is in C.

Proof. (i)⇒(ii). If (i) holds, then in M the sentences

∀x̄i∃ȳi,1, ..., ȳi,K

K∨

k=1

ϕi,k(x̄i, ȳi,k)

hold true. By the theorem of ÃLos (cf. [Ho], Theorem 9.5.1), this sentence also holds
in every ultrapower MU of M , which implies that MU ∈ C, as the ϕi,k(x̄i, ȳi,k) are
witnesses of C.

(ii)⇒(i) holds by the same proof as 3.2(ii)⇒(iii), where each MK is equal to
M . ¤

4. Axiomatizing rings with normal spectrum

Recall that a topological space X is called normal if for all disjoint closed subsets
Y,Z of X, there are disjoint open subsets U, V of X with Y ⊆ U and Z ⊆ V . If X
is a spectral space, then X is normal if and only if every point in X has a unique
specialization in Xmax. Equivalently, for every y ∈ Xmax, Gen y is closed. All
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this is well known (cf. [Ca-Co], Proposition 2) and follows quickly from 2.4. Also
recall that closed subspaces of normal spaces are normal again and that the set of
maximal points of a normal spectral space is Hausdorff.

Rings with normal Zariski spectrum are called Gel’fand rings (cf. [Joh] p.199)
and have been studied by several authors, e.g., [Ca], [Ca-Co], [Co1], [Co2] and
[dM-Or].

Lemma 4.1. Let X be a spectral space and let Y ⊆ X such that for all x ∈ X,
y1, y2 ∈ Y with x Ã y1, y2 we have y1 = y2. Then

(i) For all y1, y2 ∈ Y with y1 6= y2 there are U1, U2 ∈
◦
K(X) with yi ∈ Ui and

U1 ∩ U2 = ∅ - in particular Y is Hausdorff.
(ii) The map r : Gen(Y ) −→ Y that sends z to the unique y ∈ Y with z Ã y is

a closed map.
(iii) If Y is quasi-compact, then Gen(Y ) is a spectral subspace, Y = Gen(Y )max

and r is continuous (cf. [Ca-Co], Proposition 3)

Proof. Item (i) holds by 2.4(iv).
(ii) r is closed, since for a closed subset A of X, r(Gen(Y ) ∩A) = A ∩ Y , which

is closed in Y .
(iii) If Y is quasi-compact, then by 2.3, Gen(Y ) is a spectral subspace and

Y = Gen(Y )max. Thus, in order to prove that r is continuous we may assume
that Y = Xmax and Gen(Y ) = X. We show that r is continuous: If A ⊆ Xmax is
closed, then A is quasi-compact, hence r−1(A) = Gen(A) is proconstructible by 2.3.
The assumption implies that Gen(A) is closed under specialization, hence r−1(A)
is closed by 2.4(i). ¤

By Hochster’s Theorem ([Hoc]), every spectral space is homeomorphic to SpecA
for some ring A. The ring of course imposes a lot of additional structure on X. A
simple, but crucial, separating property in terms of the principal open sets D(f),
f ∈ A is the following.

Lemma 4.2. Let A be a ring. If V ⊆ Spec A is closed and U ⊆ Spec A is open
with V ⊆ U , then there are f, g ∈ A with V ⊆ V (f) ⊆ D(g) ⊆ U .

Proof. Let I, J be ideals of A with V = V (I) and SpecA\U = V (J). Since V ⊆ U
we have V (I + J) = V (I) ∩ V (J) = ∅, in other words 1 ∈ I + J . Take f ∈ I, g ∈ J
with 1 = f + g. Then V ⊆ V (f), V (J) ⊆ V (g) and V (f) ∩ V (g) = ∅, which gives
the assertion. ¤

In the next theorem we extend the list of characterizations of Gel’fand rings
given in [Ca-Co], Proposition 3 and [Joh], p. 199. The equivalence of conditions (i)
and (iv) is Contessa’s Theorem 4.1, [Co1]. The implication (i)⇒(iii) is essentially
Lemma 3.1 of [Co1].

Theorem 4.3. Let A be a ring. The following are equivalent:

(i) A is a Gel’fand ring.
(ii) If V, ..., Vn ⊆ Spec A are closed with V1 ∩ ... ∩ Vn = ∅, then there are

c1, ..., cn ∈ A with Vi ⊆ D(ci) and D(c1) ∩ ... ∩D(cn) = ∅.
(iii) for all a, b ∈ A with V (a) ∩ V (b) = ∅ there are c, d ∈ A with V (a) ⊆ D(c),

V (b) ⊆ D(d) such that D(c) ∩D(d) = ∅.
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(iv) for all a, b ∈ A with 1 ∈ (a, b) there are c, d ∈ A with 1 ∈ (a, c), 1 ∈ (b, d)
such that c·d = 0.

(v) A |= ∀a ∃x, x′ (1− xa)·(1− x′(1− a)) = 0.
Hence the class of rings with normal spectrum is axiomatizable. Normality of Spec A
can be characterized by a strict Horn formula (cf. [Ho], section 9.1) in the language
of rings.

Proof. (i)⇒(ii). We first show that there is some c1 ∈ A with V1 ⊆ D(c1) and
D(c1) ∩W = ∅, where W = V2 ∩ ... ∩ Vn. Since Spec A is normal and V1,W are
disjoint and closed we can apply 2.4(iv) to find open and disjoint sets O ⊇ V ,
U ⊇ W . By 4.2 there is some c1 ∈ A with V1 ⊆ D(c1) ⊆ O. Then D(c1) ⊆ O ⊆
Spec A \ U , and D(c1) ∩W = ∅.

Applying this argument again to V2 and D(c1) ∩ V3 ∩ ... ∩ Vn gives c2 ∈ A with
V2 ⊆ D(c2) and D(c1) ∩D(c2) ∩ V3 ∩ ... ∩ Vn = ∅. Continuing in this way we get
the elements c1, ..., cn as desired.

(ii)⇒(iii) is a weakening.
(iii)⇒(iv). Let a, b ∈ A with 1 ∈ (a, b). Then V (a) ∩ V (b) = ∅. Hence by (iii)

there are c, d ∈ A with V (a) ⊆ D(c), V (b) ⊆ D(d) such that D(c)∩D(d) = ∅. Now
D(c) ∩D(d) = ∅ says ck ·dk = 0 for some k ∈ N. Note that V (a) ⊆ D(c) = D(ck)
implies 1 ∈ (a, ck). Similarly one proves 1 ∈ (b, dk). The elements ck, dk have the
properties required in (iv).

(iv)⇒(v). By (iv), there are c, d ∈ A with 1 ∈ (a, c), 1 ∈ (1− a, d) and c·d = 0.
Pick x, x′, y, y′ ∈ A with 1 = xa + yc, 1 = x′(1− a) + y′d. Then

(1− xa)·(1− x′(1− a)) = ycy′d = 0.

(v)⇒(i). Let m, n be distinct maximal ideals of A. Take a ∈ m, b ∈ n with
1 = a + b. By (v) there are x, x′ ∈ A with (1 − xa) ·(1 − x′(1 − a)) = 0. Hence
a common generalization p of m and n will contain 1 − xa or 1 − x′(1 − a), say
1−xa ∈ p. Then a, 1−xa ∈ m, so 1 ∈ m, a contradiction. This shows that distinct
maximal ideals of A do not have a common generalization, which proves (i). ¤

The Theorem says that the class of all rings with normal spectrum is axiomati-
zable. We shall apply this result to the factor rings A/ Jac A, where Jac A is the
Jacobson radical. The class of rings with normal Spec(A/ JacA) is axiomatizable
as well. The argument we use is a special instance of the “interpretation method”,
which is explained in [Ho], section 5. We sketch the method since it will appear
several times later on.

To start with, recall that Jac A is the intersection of the maximal ideals of A
and

Jac A = {a ∈ A | ∀x ∃u 1 = u·(1 + xa)}.
Hence Jac A is the subset of A defined by the formula

ι(v) := ∀x ∃u 1 = u·(1 + xv).

In this sense A/ Jac A is a “definable residue ring” of A.

Proposition 4.4. If C is an axiomatizable class of rings, then the class D of all
rings A with A/ Jac A ∈ C is axiomatizable, too. Moreover, any explicitly given set
of axioms of C can be explicitly translated into a set of axioms for D.
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Proof. We give an outline the proof: Let T be the theory of C. For each quantifier
free ring-formula ϕ(v1, ..., vn), let ϕJac be the ring formula obtained from ϕ by
replacing a term equality t(v̄) = 0 with ι(t(v̄)). Then for each n-tuple ā ∈ An we
certainly have

(∗) A/ JacA |= ϕ(ā mod Jac A) ⇐⇒ A |= ϕJac(ā).

By induction on the number of quantifiers, we extend the assignment ϕ 7→ ϕJac

to all ring-formulas. It is straightforward to check that (∗) remains true for all
formulas. This proves the proposition, since now we know that {ϕJac | ϕ ∈ T}
axiomatizes the class of rings A with A/ Jac A ∈ C. ¤

We give an application of 4.4 using 4.3. First recall from [Ca-Co], p.230 for
every spectral space X: If Xmax is Hausdorff and dense in X, then X is normal
(If x, y ∈ Xmax are distinct points, then take U, V ∈ ◦

K(X), x ∈ U, y ∈ V and
U ∩ V ∩Xmax = ∅. The density of Xmax implies U ∩ V = ∅, in particular x, y do
not have a common generalization in X.)

Corollary 4.5. Let A be a ring. We set X = Spec A and Y = Spec(A/ Jac A).
Then Xmax is a Hausdorff space if and only if Y is normal. Hence, by 4.4 and 4.3,
the class of rings A with Spec A Hausdorff is first order axiomatizable.

Proof. We identify Y canonically with a closed subspace of X. Note that Xmax =
Y max. By the above remark, Y max is Hausdorff if and only if Y is normal. ¤

The class of rings such that the maximal points form a proconstructible subset
of the spectrum is axiomatizable as well:

Corollary 4.6. Let A be a ring. Then (Spec A)max is proconstructible if and only
if A/ JacA has boolean spectrum. Since A/ JacA has boolean spectrum if and only
if it is von Neumann regular, the property “(Spec A)max is proconstructible” defines
an axiomatizable class of rings.

Proof. Since Spec A/ Jac A is a proconstructible subset of Spec A, (SpecA)max is
proconstructible if A/ JacA has boolean spectrum.

Conversely, if (Spec A)max is proconstructible, then by 2.8, V (Jac A)min is con-
tained in (Spec A)max, which shows that A/ JacA has boolean spectrum. ¤

Remark 4.7. In [Sch-Tr] we give an elementary description of the property

“(SpecA)max is boolean”,

namely (SpecA)max is boolean if and only if in the ring A/ JacA is an exchange
ring, i.e., every element is a sum of a unit and an idempotent (cf. [Joh], p. 187;
another name appearing in the literature is clean ring).

5. Partition of unity and local characterization of normality

For any subset S of a ring A let

D(S) := {p ∈ Spec A | p ∩ S = ∅}.
Hence D(S) is a generically closed subset of Spec A, in fact D(S) =

⋂
s∈S D(s)

is inversely closed (and thus proconstructible). Note also that not every inversely
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closed subset is of this form. For example D(a) ∪ D(b) = D(S) for some set S if
and only if D(a) ∪D(b) = D(c) for some c ∈ A.

Recall that for any multiplicatively closed subset S of A, the localization map
ιS : A −→ AS induces an homeomorphism Spec AS −→ D(S).

Theorem 5.1. (Partition of unity in Gel’fand rings) Given a ring A, Spec A is
normal if and only if A has partitions of unity, i.e., for every open cover Spec A =
U1 ∪ ... ∪ Un there are f1, . . . , fn ∈ A with 1 = f1 + ... + fn such that D(fi) ⊆ Ui

(1 ≤ i ≤ n).

Proof. First suppose A has partitions of unity. Take a, b ∈ A with V (a)∩V (b) = ∅.
We show that there are open disjoint neighborhoods of V (a) and V (b) in Spec A.
From the characterization 4.3(iii) and 4.2 this proves normality of Spec A. Since
D(a) ∪ D(b) = Spec A and A has partitions of unity, there are f, g ∈ A with
f + g = 1 such that D(f) ⊆ D(a) and D(g) ⊆ D(b). Then V (a) ⊆ Spec A \D(f),
V (b) ⊆ Spec A \D(g) and (SpecA \D(f)) ∩ (Spec A \D(g)) = ∅, since Spec A =
D(f) ∪D(g) ⊆ D(f) ∪D(g). Thus Spec A is normal.

Conversely assume SpecA is normal. Take an open cover Spec A = U1 ∪ ...∪Un.
Let Vi := Spec A \ Ui. Then V1 ∩ ... ∩ Vn = ∅ and by 4.3(ii), there are ci ∈ A with
Vi ⊆ D(ci) and D(c1)∩ ...∩D(cn) = ∅. Let Ii ⊆ A be an ideal with V (Ii) = D(ci).
Then V (I1) ∩ ... ∩ V (In) = ∅, which means 1 ∈ I1 + ... + In. Pick fi ∈ Ii with
1 = f1 + ... + fn. Then Vi ⊆ D(ci) ⊆ V (Ii) ⊆ V (fi), thus Vi is in the interior of
V (fi), in other words D(fi) ⊆ Ui (1 ≤ i ≤ n). ¤

Lemma 5.2. If S ⊆ A is multiplicatively closed, then ιS is surjective if and only
if D(S) is closed.

Proof. If ιS is surjective, then the image of Spec ιS is V (Ker ιS), which is closed.
Conversely assume D(S) is closed. Take s ∈ S. As D(S) ⊆ D(s) and D(S) is

closed, 4.2 gives us some a ∈ A with D(S) ⊆ V (a) ⊆ D(s). Since V (a) ⊆ D(s),
there are α, β ∈ A with αa + βs = 1. Since D(S) ⊆ V (a) we have ak

1 = 0 in AS for
some k. Then 1 = (αa + βs)k = αk ·ak + s·c for some c ∈ A. Hence s·c

1 = 1 in AS ,
which shows that 1

s ∈ AS is in the image of ιS , as desired. ¤

For any subset X of Spec A we write S(X) for the multiplicatively closed set
{s ∈ A | X ⊆ D(s)}. Observe that S(X) = S(Gen X).

Corollary 5.3. If X is closed and generically closed, then X = D(S(X)). Hence
by 5.2, the localization map ιS(X) : A → AS(X) is surjective.

Proof. Obviously X ⊆ D(S(X)). Conversely if p 6∈ X, then X ∩ {p} = ∅, since X

is generically closed. Since X is closed we may apply 4.2 to X ⊆ Spec A \ {p} and
there is some s ∈ A with X ⊆ D(s) and p ∈ V (s). This means p 6∈ D(S(X)). ¤

As a remark we give the following characterization of Gel’fand rings. Contessa
proved the result in [Co2], Theorem 1.2. It is also related to [Joh], section 3.8, p.
199, Lemma. The proof is an easy application of our previous considerations.

Remark 5.4. The following are equivalent for every ring A.
(i) A is a Gel’fand ring.
(ii) For every maximal ideal m of A, the localization map A −→ Am is surjective
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(iii) For all mutually disjoint, quasi-compact subsets K1, ..., Kn of (Spec A)max,
the product of the localization maps

(ι1, ..., ιn) : A −→
n∏

i=1

AS(Ki)

is surjective.

Proof. Clearly (iii) implies (ii): take n = 1 and K1 = {m}. If (ii) holds, then for
every maximal ideal m of Spec A, D(A \ m) is closed by 5.2. But D(A \ m) is the
set of generalizations of m in Spec A. This shows that Spec A is normal.

It remains to show that (i) implies (iii). Let Vi := Gen(Ki) and let K :=
K1 ∪ ... ∪ Kn. Since SpecA is normal, all these sets are closed and generically
closed, and Gen K is the disjoint union of the Vi. By 5.3 we know that ιS(K) is
surjective and it remains to show that the natural map

AS(K) −→
n∏

i=1

AS(Ki)

is an isomorphism. Since ιi is surjective, we know that AS(Ki)
∼= A/Ii, where Ii

is the kernel of ιi. Since the V (Ii) = Gen(Ki) are mutually disjoint, the assertion
follows from the Chinese Remainder Theorem. ¤

Remark 5.4 can be used to show that for every Gel’fand ring the natural map
between the boolean algebras of idempotents of A and A/ Jac A is onto. This will
be discussed (and proved) in greater generality in [Sch-Tr].

By 4.3(v), a ring A is a Gel’fand ring if and only if for every a ∈ A, the equation
(1−Xa)·(1− Y (1− a)) = 0 has a solution (x, y) in A×A. One may ask if there is
an overring C of A which is Gel’fand (in other words: which has solutions for these
equations) and which is in some sense minimal with this property.

In fact by successively adjoining solutions to A for the equations above in a uni-
versal way one can easily show the following: For every ring A, there is an overring
N of A, N Gel’fand, such that whenever ϕ : A −→ B is a ring homomorphism and
B is Gel’fand, then there is a ring homomorphism ψ : N −→ B extending ϕ. In
general ψ will not be uniquely determined by ϕ and N . Moreover there are many
overrings N with these properties and it is unlikely that there is a “Gel’fand hull”
for every ring A.

Nevertheless there are canonical constructions that produce a Gel’fand extension
for any ring. Below we exhibit such a construction. The question whether Gel’fand
hull exists has also been studied in [Co2]. Contessa arrived at the same construction
that we give below (cf. [Co2], Theorem 5.11 and Theorem 6.3), but again we present
a different proof.

First recall that for every ring A, the natural map A −→ B :=
∏

m∈(Spec A)max Am

is an embedding and B is a Gel’fand ring, since products of Gel’fand rings are again
Gel’fand (cf. 4.3(v)). We construct a small Gel’fand ring C between A and B:

Example 5.5. Firstly, if A is a local ring, then for every function ϕ : A −→ A
which extends A× −→ A×, a 7→ a−1, we have (1−ϕ(a)·a)·(1−ϕ(1−a)·(1−a)) = 0,
since a ∈ A× or 1−a ∈ A× for every a ∈ A. In particular the function ϕA : A −→ A
defined by

ϕA(a) :=

{
a−1 if a ∈ A×

0 if a 6∈ A×
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provides the solution (ϕA(a), ϕA(1− a)) of (1−Xa)·(1− Y (1− a)) = 0. Observe
that ϕA is a multiplicative map A −→ A which extends a 7→ a−1.

Now let (Ax | x ∈ X) be a family of local rings and let B :=
∏

x∈X Ax. We
define ϕ : B −→ B by ϕ((ax)) := (ϕAx

(ax)) and we see that for every b ∈ B,
(ϕ(b), ϕ(1− b)) solves (1−Xb)·(1−Y (1− b)) = 0. Again ϕ is a multiplicative map
B −→ B.

Let A be a subring of B and let C be the subring of B, generated by A and
all the ϕ(a) (a ∈ A). We claim that C is closed under ϕ, in particular C is
Gel’fand (since the restriction of ϕ to C provides solutions for all the equations
(1−Xc)·(1− Y (1− c)) = 0 where c ∈ C).

Proof. Since ϕ is multiplicative and ϕ(1) = 1, every element c of C is of the form

c = a1ϕ(s1) + ... + anϕ(sn) for some ai, si ∈ A.

For ε ∈ {0, 1}n and ε(i) = 1 let sε,i :=
∏n

j=1,ε(j)=1,j 6=i sj . We claim that

ϕ(c) =
∑

ε∈{0,1}n

dε,

where

dε := (
n∏

i=1,ε(i)=1

s2
i ϕ(si))·ϕ(

n∑

i=1,ε(i)=1

sε,iai)·
n∏

i=1,ε(i)=0

(1− siϕ(si)) ∈ C.

To see this, fix x ∈ X. Let ε ∈ {0, 1}n be defined by ε(i) = 1 ⇐⇒ si,x ∈ A×x .
Clearly, if ε′ ∈ {0, 1}n with ε′ 6= ε, then dε′,x = 0. Moreover we have

dε,x = (
n∏

i=1,ε(i)=1

s2
i,xϕAx(si,x))·ϕAx(

n∑

i=1,ε(i)=1

sε,i,xai,x).

Since
∏n

i=1,ε(i)=1 s2
i,xϕAx(si,x) = ϕAx(

∏n
i=1,ε(i)=1 s−1

i,x) and ϕAx is multiplicative we
get

dε,x = ϕAx(
n∑

i=1,ε(i)=1

s−1
i,xai,x).

But
∑n

i=1,ε(i)=1 s−1
i,xai,x = cx by definition of ε, which shows that ϕ(c)x = ϕAx(cx) =

dε,x as desired. ¤

6. Non-axiomatizability of rings with completely normal spectrum

Recall that a spectral space is completely normal if the closure of every point
is a specialization chain.

Lemma 6.1. Suppose that A is a ring and the prime ideals p and q are incompa-
rable. Then there are elements s, t ∈ A such that p, q ∈ D(s), p, q ∈ V (t), there is
no common specialization in D(s) and there is no common generalization in V (t).

Proof. We pick elements a ∈ p \ q and b ∈ q \ p. Then s = a + b and t = a · b meet
the requirements. ¤

Corollary 6.2. A ring A has completely normal spectrum if and only if D(s) is
normal for every s ∈ A.
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Proof. It follows directly from the definition that every spectral subspace of a com-
pletely normal spectral space is completely normal, as well. This applies to the
D(s).

Conversely suppose Spec A is not completely normal. Pick p, q ∈ Spec A that
are incomparable w.r.t. inclusion and have a common generalization r in Spec A.
Pick s ∈ A as in 6.1. Then Dp and Dq have distinct maximal specializations in
D(s), and Dr specializes to both of them. Thus, D(s) is not normal. ¤

The Corollary suggests that, in order to characterize rings with completely nor-
mal spectrum algebraically, we should first describe the property “D(s) is com-
pletely normal” in algebraic terms.

Proposition 6.3. Let A be a ring and let s ∈ A. The following are equivalent:

(i) D(s) is a normal spectral space.
(ii) for all a, b ∈ A with D(s) ∩ V (a) ∩ V (b) = ∅ there are c, d ∈ A with

D(s)∩V (a) ⊆ D(c), D(s)∩V (b) ⊆ D(d) such that D(s)∩D(c)∩D(d) = ∅.
(iii) for all a, b ∈ A with s ∈

√
(a, b) there are c, d ∈ A with s ∈

√
(a, c),

s ∈
√

(b, d) such that s·c·d is nilpotent.
(iv) for all p ∈ N and all a ∈ A there are c, d ∈ A and k ∈ N with sk ∈ (a, c),

sk ∈ (sp − a, d) and c·d = 0.

Proof. (i)⇔(ii) follows easily from 4.3, since D(s) is canonically homeomorphic to
Spec As and VSpec As(

a
sk ) is mapped onto D(s) ∩ V (a).

(ii)⇔(iii) follows from the following translation table:

(a) D(s) ∩ V (a) ∩ V (b) = ∅ ⇐⇒ V (a) ∩ V (b) ⊆ V (s) ⇐⇒ s ∈
√

(a, b).
(b) D(s) ∩ V (a) ⊆ D(c) ⇐⇒ V (c) ⊆ D(a) ∪ V (s) ⇐⇒ V (c) ∩ V (a) ⊆

V (s) ⇐⇒ s ∈
√

(a, c).
(c) D(s) ∩D(c) ∩D(d) = ∅ ⇐⇒ s·c·d is nilpotent.

(iii)⇒(iv). Let a ∈ A and take b = sp − a. Then s ∈
√

(a, b) and by (iii) there are
c0, d0 ∈ A and l ∈ N such that (s ·c0 ·d0)l = 0, sl ∈ (a, c0) and sl ∈ (b, d0). Take
k := 2·l2, c = (sc0)l and d = (sd0)l. Then c·d = 0, sk = (s2l)l ∈ (a, sl ·c0)l ⊆ (a, c)
and similarly sk ∈ (b, d) = (sp − a, d).

(iv)⇒(iii). Take a, b ∈ A with s ∈
√

(a, b), hence sp = xa + yb for some p ∈ N
and some x, y ∈ A. Define a0 := xa. By (iv) there are c, d ∈ A and k ∈ N with
sk ∈ (a0, c), sk ∈ (sp − a0, d) and c·d = 0. Since (a0, c) ⊆ (a, c) and (sp − a0, d) ⊆
(b, d) we get (iii). ¤

Corollary 6.4. Spec A is completely normal if and only if for all s, a ∈ A there
are x, x′ ∈ A and k ∈ N such that

(∗) (sk − xsa)·(sk − x′(s2 − sa)) = 0.

Hence the class of rings with completely normal spectrum is pseudo elementary with
witnesses ϕk(x1, x2, y1, y2) := (xk

1 − y1x1x2)·(xk
1 − y2(x2

1 − x1x2)) = 0.

Proof. If Spec A is completely normal, then (∗) holds by 6.3(i)⇒(iv) applied to
p = 2 and s·a.

Conversely if (∗) holds, then item (iv) of 6.3 holds for every s ∈ A: Pick p ∈
N, a ∈ A and apply (∗) to sp and a. Then straightforward checking shows that
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c = skp−xspa and d = skp−x′(s2p− spa) satisfy skp ∈ (a, c), skp ∈ (sp− a, d) and
c·d = 0.

Therefore, condition (∗) implies that all D(s) are normal and by 6.2, Spec A is
completely normal. ¤
Remark 6.5. To compare the classes of rings with normal spectrum and with com-
pletely normal spectrum, note that condition (∗) applied to a = 1 and any element
a ∈ A yields the condition of 4.3(v). Conversely, 4.3(v) implies that, given s, a ∈ A,
there are x, x′ ∈ A with (s− xsa)·(s− x′(s− sa)) = 0.

Definition 6.6. Let A be a ring. We define
• k(s, a) = inf{k ∈ N | ∃x, x′ (sk−xsa)·(sk−x′(s2− sa)) = 0} ∈ N∪{ω,∞}

for all pairs of elements a, s ∈ A;
• CN(A) = sup{k(s, a) | s, a ∈ A} ∈ N ∪ {ω,∞}.

By Corollary 6.4, the spectrum of A is completely normal if and only if CN(A) ≤
ω.

Observe that k(s, a) = k(s, s−a). Since the product (sk−xsa)·(sk−x′(s2−sa))
is a multiple of s it is trivially true that k(0, a) = 1. Moreover we have k(s, 0) =
k(s, s) ≤ 2 for all s. If A is local then k(s, a) = 1 for each s ∈ A× . For, one defines
x = a−1, x′ = 1 if a is a unit and x = 1, x′ = (s − a)−1 if a is not a unit. If A
is a domain, then (sk − xsa)·(sk − x′(s2 − sa)) = 0 if and only if s = 0 or a 6= 0,
sk−1

a ∈ A or s 6= a, sk−1

s−a ∈ A.

Corollary 6.7. Let T be a theory extending commutative rings in a language ex-
tending the language of rings, such that every model of T has completely normal
spectrum. Then there is a natural number k such that for every model A of T and
all s, a ∈ A there are x, x′ ∈ A with (sk − xsa) ·(sk − x′(s2 − sa)) = 0. In other
words, CN(A) is bounded by a natural number when A runs through the models of
T .

Proof. By 3.2 and 6.4. ¤
In the rest of this section we use the following notation: We pick a field F and

consider the polynomial ring F [X] = F [X1, . . . , Xn]. The quotient field is denoted
by F (X). The variables generate the maximal ideal m ⊂ F [X]. If P =

∑
i∈Nn

0
αi·Xi

is a polynomial then ord(P ) = inf{|i| | αi 6= 0} is the order of P . This is an integer
or ∞.The map v : F (X) → Z ∪ {∞}, v(P

Q ) = ord(P ) − ord(Q) is a valuation;
let V be the valuation ring, n its maximal ideal. Then n ∩ F [X] = m, hence the
localization F [X]m is contained in V . The maximal ideal of F [X]m is denoted
by mm; its powers are mk

m. If P
Q ∈ F [X]m then v(P

Q ) = k ∈ N if and only if
P
Q ∈ mk

m \mk+1
m .

Example 6.8. We pick some k ∈ N and define A := F [X]/mk. The residue class
of P ∈ F [X] is denoted by P + mk. We claim that CN(A) = dk

2 e.
Proof. Note that A is a local ring with maximal ideal m/mk. Pick any two elements
s, a ∈ A. We show that k(s, a) ≤ dk

2 e: If s ∈ A× then k(s, a) = 1. If s /∈ A× then
s2·l = 0 for all l ≥ dk

2 e. Setting x = x′ = sl−1 we obtain (sl−xsa)·(sl−x′(s2−sa)) =
0, and this implies k(s, a) ≤ dk

2 e. It has been proved that CN(A) ≤ dk
2 e

It remains to exhibit elements s, a ∈ A with k(s, a) = dk
2 e. We set s = X1 +

mk and a = X2 + mk. We need to show that the existence of c, d ∈ A with
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(sk − csa) · (sl − d(s2 − sa)) = 0 implies 2l ≥ k. We show this by looking at
representatives in the polynomial ring. Suppose that there are polynomials C, D ∈
F [X] such that v(X l

1−C ·X1 ·X2)·(X l
1−D · (X2

1 −X1 ·X − 2)) ≥ k. The order of
X l

1−C ·X1 ·X2 is at most l. The automorphism of F [X] that preserves all variables
except X2 and maps X2 → X1 −X2 preserves the order of polynomials. Therefore
ord(X l

1 −D · (X2
1 −X1 ·X − 2)) ≤ l as well. We conclude that, for any choice of

polynomials C and D, (X l
1 − C · X1 · X2) ·(X l

1 − D · (X2
1 − X1 · X − 2)) /∈ mk if

2 · l < k. ¤

Several non-axiomatizability results follow immediately from the example:

Corollary 6.9. The following classes of rings are not axiomatizable:
• Rings with singleton spectrum.
• Rings with Boolean spectrum.
• Rings with totally ordered spectrum.
• Rings with completely normal spectrum.

Proof. From 6.8 and 6.7. ¤

Remark 6.10. For every ring A and each ideal I of A we have CN(A) ≥ CN(A/I).

Proof. Every equation of type (∗) in 6.4, remains valid when applying the residue
map A → A/I. Thus, by definition of CN(A) and CN(A/I) we get CN(A) ≥
CN(A/I). ¤

The ring in Example 6.8 is not reduced. Therefore it cannot be applied directly
to decide axiomatizability of the class of reduced rings with completely normal
spectrum. However, we shall now construct a domain Bk which has exactly one
prime ideal besides (0) and a factor ring that is isomorphic to F [X]/mk. By 6.10
and 6.8 this implies CN(Bk) ≥ k

2 . In fact, we shall prove the stronger result that
CN(Bk) = k+2. One concludes that the set of invariants CN(A) is not bounded by
a natural number as A varies in the class of reduced rings with completely normal
spectrum.

In the following proposition we use a construction, that is closely related to the
so-called “D+M-construction” (cf. [Gi], Appendix 2).

Proposition 6.11. We fix a natural number k and set Ik = {z ∈ V | v(z) ≥ k}.
We claim that the ring Bk := F [X]m + Ik has the following properties:

(i) Bk is a local domain with maximal ideal nk = mm + Ik; the maximal ideal
and (0) are the only prime ideals of B.

(ii) The residue ring Bk/Ik is isomorphic to F [X]/mk.
(iii) If n ≥ 2, then CN(Bk) = k + 2.

Proof. First note that Ik ⊂ V is an ideal. Thus Bk is a subring of V . Clearly, Bk

is a domain. Both Ik and nk are ideals of Bk; note that nk = Bk ∩ n. It follows
from Ik ∩ F [X]m = mk

m that

Bk/Ik ' F [X]m/(Ik ∩ F [X]m) = F [X]m/mk
m ' F [X]/mk.

This proves claim (ii). The ideal nk/Ik ⊂ Bk/Ik corresponds to the ideal m/mk ⊂
F [X]/mk under this isomorphism. It follows that

Bk/nk ' (Bk/Ik)/(nk/Ik) ' (F [X]/mk)/(m/mk) ' F [X]/m ' F,
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which shows that nk is a maximal ideal. In order to prove that it is the only
maximal ideal it is enough show that a ∈ nk implies 1− a ∈ B×

k :
It follows from v(a) ≥ 1 that v(ak) ≥ k, hence ak ∈ Ik. Since Ik is a proper ideal

in the valuation ring V , the set 1 + Ik is a multiplicative subgroup of V ×. The set
1+Ik is also contained in Bk, hence it is also a multiplicative subgroup of B×

k . The
identity (1− a)·(1 + a + a2 + ... + ak − 1) = 1− ak shows that there is a multiple
of 1− a that is a unit, hence 1− a is a unit as well.

Next we show that the Bk does not have prime ideals other than (0) and nk. We
pick an element s ∈ nk, s 6= 0 and prove that nk =

√
s·Bk: Let t ∈ nk and pick

some d ∈ N with d ·v(t) ≥ v(s) + k. Then v( td

s ) ≥ k, hence td

s ∈ Ik, we see that
td ∈ s·Bk. This proves our claim and finishes the proof of (i).

It remains to prove (iii): The first step is to show k(s, a) ≤ k+2 for all s, a ∈ Bk.
(This statement is also true for n = 1). If s = 0 or if s ∈ B×

k , then we know
k(s, a) = 1 since Bk is local. If a = 0 or a = s, then k(s, a) ≤ 2. So suppose
that s /∈ B×

k , s 6= 0 and a 6= s, 0. Since we are in a domain it is enough to show
sk+1

a ∈ Bk or sk+1

s−a ∈ Bk. Notice that v(s) > 0.
Since v(s) ≥ min{v(a), v(s − a)} we have v(a) ≤ v(s) or v(a − s) ≤ v(s), say

v(a) ≤ v(s). Then

v

(
sk+1

a

)
= (k + 1)·v(s)− v(a) ≥ k · v(s) ≥ k,

and sk+1

a ∈ Ik ⊂ Bk, as desired.
It remains to verify that k(s, a) = k + 2 for suitable s, a ∈ Bk. We show

k(X1, X2) ≥ k + 2. Since Bk is a domain, we have to show for l ∈ N that both
Xl

1
X2

∈ Bk and Xl
1

X1−X2
∈ Bk imply l ≥ k + 1.

If Xl
1

X2
∈ Bk then we write Xl

1
X2
− P

Q ∈ Ik, where Q(0) 6= 0. The polynomial X l
1 ·Q

contains the monomial X l
1 with non-zero coefficient. This monomial is not canceled

in the polynomial X l
1 ·Q − X2 ·P , hence v(X l

1 ·Q − X2 ·P ) ≤ l. We conclude that
k ≤ v

(
Xl

1
X2
− P

Q

)
= v(X l

1 ·Q − X2 ·P ) − v(X2) − v(Q) ≤ l − 1, which proves the
desired inequality.

Finally we define σ to be the F -automorphism of F (X) defined by X2 → X1−X2,
Xi → Xi otherwise. Then σ is an involution, preserves the valuation and restricts
to an automorphism of Bk. Therefore, supposing that Xl

1
X1−X2

∈ Bk, we apply σ to

show that Xl
1

X2
∈ Bk, and this is a case that has already been dealt with. ¤

Corollary 6.12. The classes of reduced rings with totally ordered spectrum, or with
totally ordered spectrum of length bounded by some natural number l ≥ 2, or with
completely normal spectrum are all not first order axiomatizable.

Proof. The rings Bk constructed in 6.11 belong to all classes. As CN(Bk) = k + 2
it follows that there is no axiomatizable class of rings all of whose members have
completely normal spectrum and that contains all the rings Bk. ¤

Finally in this section, we exhibit a reduced ring A with CN(A) = ω. The ring
will be constructed from the sequence of rings Bk defined in Proposition 6.11.

Each of the rings Bk is a local F -algebra with residue field F . Thus, Bk = F⊕nk.
We form the direct product B =

∏
k∈NBk. This is an F -algebra, and we consider F
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as a subring. The direct sum n =
⊕

k∈N nk of the maximal ideals of the components
is an ideal of B. Then A := F ⊕n is a subring of B and n is the largest proper ideal
of A. Hence A is a reduced local ring with maximal ideal n. We shall identify nl

with the ideal
∏

k∈N,k 6=l{0}×nl. The projections prk : A → B → Bk are surjective,
their kernels are denoted by pk.

The prime ideals pk are incomparable. We show that SpecA = {pk | k ∈ N}∪{n}:
Suppose that p ∈ Spec A \ n, i.e., p ( n. There are some k ∈ N and a ∈ nk with
a 6∈ p. For each b ∈ pk we have a ·b ∈ pk ∩ nk = (0), hence a ·b = 0 ∈ p. This
implies b ∈ p, hence pk ⊆ p ( n. But then (0) = prk(pk) ⊆ prk(p) ( prk(n) = nk is
a sequence of prime ideals in Bk. As we know all the prime ideals of Bk (6.11) we
conclude that prk(p) = (0), hence pk = p.

The space Spec A is completely normal (since its structure has been deter-
mined completely). It follows that CN(A) ≤ ω . On the other hand, CN(A) ≥
CN(A/pk) = CN(Bk) ≥ k + 2 for each k (by 6.11).This shows:

Proposition 6.13. The ring A is reduced and local and satisfies CN(A) = ω. Its
spectrum is completely normal, but some ultra power of A does not have completely
normal spectrum (by 3.4).

7. Rings with inversely normal spectrum

Definition 7.1. A spectral space X is called inversely normal if Xinv is normal,
i.e., every point has a unique minimal generalization in X. Recall that Xinv is the
set X, equipped with the inverse topology (cf. 2.1).

Remark 7.2. For every ring A, Spec A is inversely normal if and only if for all distinct
minimal prime ideals p, q of A there is some a ∈ A with a ∈ p and 1− a ∈ q.

Proof. Spec A is inversely normal if and only if for all distinct p, q ∈ (Spec A)min

we have {p} and {q} are disjoint, if and only if for all distinct p, q ∈ (Spec A)min

we have p + q = A. ¤

Lemma 7.3. Let X be a spectral space.
(i) If there is a specialization preserving retraction r : X −→ Xmin of Xmin −→

X, then X is inversely normal and r(x) Ã x for all x ∈ X. (cf. [Ca-Co],
Proposition 3 ).

(ii) If X is inversely normal, then Xmin is quasi-compact if and only if the map
r : X −→ Xmin that maps x to the unique minimal point z ∈ X with z Ã x,
is continuous. If this is the case then r is a spectral map.

Proof. (i). Let x ∈ X. Take y ∈ Xmin with y Ã x. By assumption y = r(y) Ã
r(x) ∈ Xmin, hence y = r(x).

(ii). If r is continuous, then Xmin is the image of a quasi-compact space under
a continuous map, hence is quasi-compact. Conversely suppose Xmin is quasi-
compact. Then, by 2.7, Xmin is a proconstructible subset of X. We prove that r is
continuous: Let A ∈ K(X). Then

r−1(A ∩Xmin) =
⋃

x∈A∩Xmin

{x}.

Since Xmin and A are proconstructible, the latter set is A ∩Xmin, which is closed.
Hence r is continuous.



20 NIELS SCHWARTZ, MARCUS TRESSL

As Xmin is proconstructible, 4.1(iii) applied to Xinv says that r is continuous
w.r.t. the inverse topology. As it is also continuous, r is spectral. ¤

Proposition 7.4. The following are equivalent for every ring A:

(i) Spec A is inversely normal.
(ii) For all a, b ∈ A with D(a) ∩ D(b) = ∅ there is some c ∈ A such that

D(a) ⊆ V (c) and D(b) ⊆ V (1− c).
(iii) ∀a, b ∈ A∃c ∈ A∃n ∈ N : a·b = 0 → an ·c = 0 = bn ·(1− c).

If A is reduced, then (i)-(iii) are also equivalent to
(iv) ∀a, b ∈ A∃c ∈ A : a·b = 0 → a·c = 0 = b·(1− c).

Proof. (ii)⇒(i). Let p, q ∈ Spec A be minimal prime ideals with p 6= q. We must
show that p + q = A. Since both ideals are minimal, there are a, b ∈ A such that
D(a) ∩D(b) = ∅, p ∈ D(a) and q ∈ D(b). Pick c as in (ii). Then c ∈ p, 1 − c ∈ q,
and 1 ∈ p + q as desired.

(i)⇒(ii). Let a, b ∈ A with D(a) ∩D(b) = ∅. Since Spec A is inversely normal.
there are disjoint inversely open subsets V, W of Spec A such that D(a) ⊆ V ,
D(b) ⊆ W . Since D(a), D(b) are quasi-compact in the inverse topology we may
assume that V = V (c1, ..., ck) and W = V (d1, ..., dl). Since V ∩W = ∅, there are
c ∈ (c1, ..., ck), d ∈ (d1, ..., dl) with c+d = 1. Then d = 1−c, and D(a) ⊆ V ⊆ V (c),
D(b) ⊆ V (d1, ..., dl) ⊆ V (1− c).

(ii)⇒(iii). If a ·b = 0, then by (ii) there are d, e ∈ A with D(a) ⊆ V (d) and
D(b) ⊆ V (e), V (d) ∩ V (e) = ∅. Hence a·d and b·e are nilpotent and there is some
n ∈ N with andn = bnen = 0. We now replace d by dn and e by en and still have
V (d) ∩ V (e) = ∅. Thus 1 = xd + ye for some x, y ∈ A. Now choose c := xd. Then
an ·c = an ·xd = 0 = bn ·ey = bn ·(1− c).

The implication (iii)⇒(ii) is straightforward. Moreover the proof of (ii)⇒(iii)
also shows that we can choose n = 1 if A is reduced, hence (i)-(iii) are equivalent
to (iv) if A is reduced. ¤

The spectral space X is called inversely completely normal if the inverse
topology is completely normal. We use 6.1 to obtain an inverse version of the
characterization of complete normality in 6.2:

Corollary 7.5. The spectrum of A is inversely completely normal if and only if
each principle closed subspace V (s) is inversely normal.

Proof. Spectral subspaces of inversely completely normal spaces are clearly in-
versely completely normal, hence are inversely normal. Conversely, assume that
SpecA is not inversely completely normal, i.e., there are incomparable prime ideals
p and q that are contained in a prime ideal r. By 6.1 there is a set V (s) that
contains both prime ideals, but no common generalization. Then r ∈ V (s) has two
distinct minimal generalizations in V (s). Thus, V (s) is not normal. ¤

Corollary 7.6. (i) The property “A is reduced and Spec A is inversely nor-
mal” is elementary.

(ii) The property “ Spec A is inversely normal” is not elementary.
(iii) The property “A is reduced and Spec A is completely inversely normal” is

not elementary.
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Proof. (i) follows immediately from (i) ⇐⇒ (iv) in 7.4.
(iii). If the property “A is reduced and Spec A is completely inversely normal”

is elementary, then also the property “A is reduced and Spec A is totally ordered”
is elementary, since Spec A is totally ordered if and only if A is local and SpecA
is completely inversely normal. On the other hand 6.12 shows that “A is reduced
and Spec A is totally ordered” is not elementary: a contradiction.

(ii). Assume that the class of rings with inversely normal spectrum is elementary.
Then by 7.4(i) ⇐⇒ (iii) and 3.2, there is a bound N for the numbers n ∈ N that
occur in 7.4(iii). Thus, a ring A has inversely normal spectrum if and only if A |= ϕ,
where ϕ is the sentence

∀a, b∃c : a·b = 0 → aN ·c = 0 = bN ·(1− c).

Let ψ(x, s) be the formula ∃y : x = y ·s and let γ be the sentence

∀s ∀a, b ∃c : ψ(a·b, s) → ψ(aN ·c, s) ∧ ψ(bN ·(1− c), s).

Then A satisfies γ if and only if A/s·A |= ϕ for all s ∈ A. Consequently, A satisfies
γ if and only if for all s ∈ A, the ring A/s ·A has inversely normal spectrum, if
and only if V (s) is inversely normal for all s ∈ A, if and only if Spec A is inversely
completely normal (7.5). Therefore γ axiomatizes rings with completely inversely
normal spectrum. This contradicts (iii). ¤

The condition (cf. 7.4(iv)) that expresses the property “A is reduced and Spec A
is inversely normal” is a Horn sentence (cf. [Ho], section 9.1). This implies, in par-
ticular, that products of reduced rings with inversely normal spectrum again have
inversely normal spectrum. Products of domains have this property, for example.

8. Minimal points of spectral spaces

The remainder of the paper is devoted to the study of compactness of the space
of minimal prime ideals of a ring. In the present section we characterize this prop-
erty by topological conditions concerning the spectrum itself and by properties of
distributive lattices. In the next section we take a ring theoretic point of view.

Lemma 8.1. Let X be a topological space and let O, Y ⊆ X, O open. Then

O ∩ Y = O ∩ Y .

In particular, if O is open and closed, then O ∩ Y = O ∩ Y .

Proof. Suppose x ∈ X \O ∩ Y . Then there is an open set U ⊆ X with x ∈ U such
that U ∩O ∩ Y = ∅. Since U ∩O is open, U ∩O ∩ Y = ∅, so x 6∈ O ∩ Y . ¤

Corollary 8.2. Let X be a spectral space, let K,P, O, Y ⊆ X such that K is
constructible, P is proconstructible and O is open in the constructible topology of
X. Let Z be the closure of Y in the constructible topology of X. Then

O ∩ Y ⊆ K ∩ Y ⊆ P ⇐⇒ O ∩ Z ⊆ K ∩ Z ⊆ P. ¤

Definition 8.3. Let X be a spectral space and let K ∈ K(X). If there is some

U ∈ ◦
K(X) with K ∩ Xmin = U ∩ Xmin, then we say that K has generically

constructible interior. In this case, every U ∈ ◦
K(X) with K ∩Xmin = U ∩Xmin

is called a generic interior of K.
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Proposition 8.4. Let X be a spectral space, let K ∈ K(X) and let U ∈ ◦
K(X).

The following are equivalent.

(i) There is a dense subset Z ⊆ X with U ∩ Z ⊆ int(K) ∩ Z ⊆ U .
(ii) There is a dense subset Z ⊆ X with int(K) ∩ Z = U ∩ Z.
(iii) There is a dense subset Z ⊆ X with int(K) ∩ Z ⊆ U ∩ Z ⊆ K.
(iv) U is a generic interior of K, i.e. K ∩Xmin = U ∩Xmin.

If this is the case and K ∩ U is closed in U , then U ⊆ K.

Proof. (i)⇒(ii). Let Z ⊆ X be dense with U ∩ Z ⊆ int(K) ∩ Z ⊆ U . Let Y :=
Z \ (int(K)∩Z \U). Then Y is dense in X: take O ⊆ X open and some z ∈ Z ∩O.
If z 6∈ int(K)∩Z \U , then z ∈ Y . If z ∈ int(K)∩Z \U , then z ∈ int(K)∩Z ⊆ U ,
so O ∩ U 6= ∅. Hence there is some y ∈ Z ∩O ∩ U , and y ∈ Y . This shows that Y
is dense in X. Since U ∩ Z ⊆ int(K) ∩ Z ⊆ U it follows that U ∩ Y = int(K) ∩ Y .
(ii)⇒(iii) is trivial.
(iii)⇒(iv). Let Z ⊆ X be dense with int(K) ∩ Z ⊆ U ∩ Z ⊆ K. By 8.2 we may
assume that Z is proconstructible. Since Z is dense in X, 2.6 implies that Xmin ⊆
Z. Hence int(K)∩Xmin ⊆ U ∩Xmin ⊆ K ∩Xmin. But K ∩Xmin = int(K)∩Xmin

by 2.6, so K ∩Xmin = U ∩Xmin as desired.
(iv)⇒(i). By 2.6 we have int(K) ∩Xmin = U ∩Xmin, so we can take Z = Xmin.

This shows the equivalence of (i)-(iv). Now let U be a generic interior of K and
assume that K ∩ U is closed in U . If x ∈ U and y ∈ U ∩Xmin with y Ã x, then
y ∈ K ∩ U , hence x ∈ K, since K ∩ U is closed in U . Thus U ⊆ K. ¤

Proposition 8.4 is inspired by the fact that, in practice, many rings occur as
rings of functions, i.e., A ⊆ KT , where T is a set and K is a field. Let t̂ : A → K
be the evaluation map at t ∈ T . Then the set T̂ = {ker(t̂) | t ∈ T} is dense in
Spec A, and each of the equivalent conditions (i)-(iii) of 8.4 may be used to decide
whether a constructible subset of Spec A has generic interior or not. To illustrate
this method, consider the following example. Here, and also later on, shall use the
following notation: If f ∈ KT then ZT (f) = {t ∈ T | f(t) = 0} is the zero set of
f , and CozT (f) = T \ ZT (f) is the cozero set of f .

Example 8.5. Let T be a Tychonov space and let A = C(T,R) be the ring of
continuous functions with values in R. We identify T with the subspace T̂ ⊆
Spec C(Z). Pick f ∈ A and suppose the interior of ZT (f) is of the form CozT (g)
for some g ∈ A. (Such a g exists always if X is a metric space.) Then 8.4(ii)⇒(iv)
says that V (f) ⊆ Spec A has generic interior D(g).

Lemma 8.6. Let X be a spectral space and let O, P be subsets of X, O generically
closed, P is quasi-compact in the inverse topology. Then

O ⊆ P if and only if O ∩Xmin ⊆ P ∩Xmin.

Proof. We know from 2.4(i) that P =
⋃

x∈P {x}. So, if O ⊆ P then O ∩ Xmin ⊆
O ∩Xmin ⊆ P ∩Xmin = P ∩Xmin.

Conversely, if O ∩ Xmin ⊆ P then O ⊆ ⋃
x∈O∩Xmin {x} ⊆ ⋃

x∈P {x} = P , and
we conclude that O ⊆ P . ¤
Proposition 8.7. Let X be a spectral space. The following are equivalent.
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(i) Xmin is quasi-compact, hence compact.

(ii) Xmin =
⋂{U ∈ ◦

K(X) | U is dense in X}, equivalently Xmin is procon-
structible.

(iii) For all K ∈ K(X) there is some U ∈ ◦
K(X) with K ∩Xmin ⊆ U ⊆ K. For

each such U we have U ⊆ int(K) ⊆ U .
(iv) Every constructible subset of X has a generically constructible interior.
(v) Every closed constructible subset of X has a generically constructible inte-

rior.

Suppose that the subset B ⊆ K(X) has the property that every element K(X) is a
finite intersection of elements in B (e.g. if X = Spec A and B = {V (f) | f ∈ A}),
then (i)-(v) are equivalent to

(vi) Every B ∈ B has a generically constructible interior.

Proof. By 2.7 we know already (i)⇔(ii).
(ii)⇒(iii). Let K ⊆ X be constructible. Let x ∈ K ∩ Xmin. By 2.6, int(K) ∩

Xmin = K ∩ Xmin, hence there is some Ux ∈
◦
K(X) with x ∈ Ux ⊆ K. By (ii),

K ∩ Xmin is proconstructible, thus there are finitely many xi ∈ K ∩ Xmin with
K ∩Xmin ⊆ ⋃

i Uxi and U :=
⋃

i Uxi ∈
◦
K(X) fulfills K ∩Xmin ⊆ U ⊆ K. Hence

U ⊆ K is a generic interior of K, and by, 8.6, we conclude that int(K) ⊆ int(K) ⊆
U .

(iii)⇒(iv) follows from 8.4(i)⇔(iv). The implication (iv)⇒(v) is trivial.
(v)⇒(ii). Let y ∈ X \ Xmin and take x ∈ Xmin with x Ã y. Let V ∈ K(X)

with y ∈ V , x 6∈ V . Take U ∈ ◦
K(X) with V ∩Xmin = U ∩Xmin. Then V \ U is

closed, constructible, with empty interior. Hence X \ (V \U) is open, constructible
and dense. So Xmin ⊆ X \ (V \ U). Since x Ã y, y ∈ V \ U (otherwise y ∈ U , so
x ∈ U ∩Xmin ⊆ V , a contradiction), thus y 6∈ Xmin ⊆ X \ (V \ U).

Hence (i)-(v) are equivalent and since (v)⇒(vi) is trivial, it remains to show
(vi)⇒(v). Take A ∈ K(X) and B1, ...., Bn ∈ B with A = B1 ∩ ... ∩ Bn. Take
a generic constructible interior Ui of Bi. Then clearly U1 ∩ .... ∩ Un is a generic
constructible interior of A. ¤

Let X be a spectral space. If x ∈ X\Xmin, then the complement of {x} in X is an
open and dense subset of X containing Xmin. Hence Xmin is the intersection of all
open subsets of X containing Xmin. We know (cf. 2.6(ii)) that the closure of Xmin

with respect to the constructible topology is contained in
⋂{U ∈ ◦

K(X) | U = X}.
In general the inclusion Xmin

con ⊆ ⋂{U ∈ ◦
K(X) | U = X} is proper:

Example 8.8. Let A = SpecC([0, 1],R), and let X be the inverse spectral space
of Spec A. We denote the constructible closure of Xmin by Z; this is the same as
the constructible closure of (Spec A)max, thus Z corresponds to the prime z-filters
of closed subsets of [0, 1] (equivalently: to the prime z-ideals) and Z 6= Spec A (cf.
[Schw], section 3 or [Tr],p. 145). On the other hand, if U ⊆ X is open, quasi-
compact and dense, then (Spec A)max = Xmin ⊆ U , and U is closed in Spec A. We
conclude that U = Spec A = X (since (Spec A)max is dense in Spec A). ¤

In general, it is not true that an open and dense subset of a spectral space Y
contains Y min, even if Y min is compact: Suppose that y ∈ Y min is not an isolated
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point. Then Y min \ {y} is dense in Y min, and it follows that Y \ {y} is dense
and open in Y . Such a point y always exists if Y min is compact and infinite. An
example is provided by the ring C([0, 1],R). Observe that Spec C([0, 1],R) has
compact minimal spectrum by 8.7(i)⇔(v) and 8.5).

We conclude this section with the description of the generic interior in terms of
lattices. Recall that every spectral space X is canonically homeomorphic to the
spectral space of prime filters of the distributive lattice E = K(X). In what follows
X denotes the spectral space of prime filters of a lattice E with > and ⊥. Given
a ∈ E we denote by V (a) the set of all x ∈ X containing a and D(a) = X \ V (a).
A general reference for distributive lattices and spectral spaces is Johnstone’s book
[Joh].

Lemma 8.9. Let a1, b1, ..., an, bn ∈ E. Then for every c ∈ E we have

D(c) ∩Xmin ⊆
n⋃

i=1

V (ai) ∩D(bi) if and only if

E |= ∀x [(a1 ≤ b1 ∨ x) &...& (an ≤ bn ∨ x)] −→ c ∨ x = >.

Observe that this formula is strict universal Horn in the language {∧,∨,⊥,>} of
lattices with top and bottom.

Proof. In E we have for all α, β, γ: V (α) ∩ D(β) ⊆ V (γ) ⇐⇒ α ≤ β ∨ γ. By
8.6 we know that D(c) ∩ Xmin ⊆ ⋃n

i=1 V (ai) ∩ D(bi) if and only if for all closed
constructible subsets A of X with

⋃n
i=1 V (ai)∩D(bi) ⊆ A we have D(c) ⊆ A. Since

the closed constructible subsets of X are exactly the sets of the form V (x) with
x ∈ E we get D(c) ∩Xmin ⊆ ⋃n

i=1 V (ai) ∩D(bi) if and only if

E |= ∀x [(a1 ≤ b1 ∨ x) &...& (an ≤ bn ∨ x)] −→ c ∨ x = >.

¤

Corollary 8.10. Let E be a distributive lattice and let X be the spectral space
attached to X. Let a, b ∈ E. Then

(i) D(a) ∩Xmin ⊆ V (b) ∩Xmin if and only if E |= a ∨ b = >.
(ii) D(a)∩Xmin ⊆ D(b)∩Xmin if and only if E |= ∀x x∨ b = > −→ x∨a = >.
(iii) D(a)∩Xmin = D(b)∩Xmin if and only if E |= ∀x x∨ b = > ↔ x∨ a = >.

All these formulas are strict universal Horn. ¤

Corollary 8.11. Let E be a distributive lattice and let X be the spectral space
attached to X. Let a, b ∈ E. Then D(a) is a generic interior of V (b) if and only if

E |= a ∨ b = > & ∀z [z ∨ b = > → ∀x (x ∨ a = > → x ∨ z = >)].

Proof. By 8.10 the formula holds for a, b if and only if D(a)∩Xmin ⊆ V (b)∩Xmin

and for every z ∈ E with D(z) ∩ Xmin ⊆ V (b) ∩ Xmin we have D(z) ∩ Xmin ⊆
D(a) ∩Xmin. By 2.5 this is equivalent to D(a) ∩Xmin = V (b) ∩Xmin. ¤

Corollary 8.12. Let E be a distributive lattice and let X be the spectral space
attached to X. Then Xmin is compact if and only if

E |= ∀b ∃a {a ∨ b = > & ∀z [z ∨ b = > → ∀x (x ∨ a = > → x ∨ z = >)]}.
Proof. By 8.7 and 8.11. ¤
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9. The generic interior in Zariski Spectra

Recall that an ideal I ⊆ A is called dense if the annihilator Ann(I) of I is 0. If
A is a reduced ring, then one checks without difficulty that

V (Ann(I)) = Spec A \ V (I),

hence I is dense if and only if Spec A \ V (I) is dense in SpecA.

Proposition 9.1. Let A be a reduced ring and let f1, ..., fk, g1, ..., gn ∈ A. Then
D(g1) ∪ ... ∪D(gn) is a generic interior of V (f1, ..., fk) if and only if

Ann(Ann(g1, ..., gn)) = Ann(f1, ..., fk).

Proof. First assume that D(g1)∪ ...∪D(gn) is a generic interior of V (f1, ..., fk). By
8.4, we have D(g1)∪...∪D(gn) ⊆ V (f1, ..., fk). Thus D(gj) ⊆ V (fi) for all i, j which
means fi·gj = 0 (since A is reduced). Thus f1, ..., fk ∈ Ann(g1, ..., gn), which shows
that Ann(Ann(g1, ..., gn)) ⊆ Ann(f1, ..., fk). Conversely let a ∈ Ann(f1, ..., fk) and
suppose that a ·b 6= 0 for some b ∈ Ann(g1, ..., gn). Since A is reduced, there is
a minimal prime ideal p of A not containing ab. Since a 6∈ p and a ·(f1, ..., fk) =
0 it follows that (f1, ..., fk) ⊆ p. Hence p ∈ V (f1, ..., fk) ∩ (SpecA)min and by
assumption there is some j such that p ∈ D(gj). Since b 6∈ p, we then get b·gj 6∈ p,
which contradicts b ∈ Ann(g1, ..., gn).

Conversely suppose Ann(Ann(g1, ..., gn)) = Ann(f1, ..., fk). Since each gj is in
Ann(Ann(g1, ..., gn)) we get gj ·(f1, ..., fk) = 0, hence D(gj) ⊆ V (f1, ..., fk). Con-
versely let p ∈ V (f1, ..., fk) ∩ (Spec A)min. Since

V (Ann(f1, ..., fk)) = Spec A \ V (f1, ..., fk)

we have p 6∈ V (Ann(f1, ..., fk)). Hence p 6∈ V (Ann(Ann(g1, ..., gn))), which means
that there is some b ∈ Ann(Ann(g1, ..., gn)) with b 6∈ p. Suppose g1, ..., gn ∈ p. Then
again p 6∈ V (Ann(g1, ..., gn)). This means that h 6∈ p for some h ∈ Ann(g1, ..., gn).
But then b·h 6∈ p either, which contradicts b ∈ Ann(Ann(g1, ..., gn)). ¤

Combining 8.7(i)⇔(vi) with 9.1 we obtain a result due to Mewborn (cf. [Me2],
see also [Gl], Theorem 4.2.15).

Corollary 9.2. If A is a reduced ring, then (Spec A)min is compact if and only if
for all a ∈ A there are k ∈ N and b1, ..., bk ∈ Ann(a) such that the ideal (a, b1, ..., bk)
is dense. ¤

Observe that, for any two ideals I, J ⊆ in a reduced ring, Ann(Ann(I)) = Ann(J)
if and only if I · J = 0 and I + J is dense. We define ϕk(x, y1, ..., yk) to be the
following formula in the language of rings:

x·y1 = 0 ∧ ... ∧ x·yk = 0 ∧ ∀z (z ·x = z ·y1 = ... = z ·yk = 0 → z = 0).

It expresses that y1, ..., yk ∈ Ann(a) and (a, y1, ..., yk) is dense. Now 9.2 says that
the class of all reduced rings with compact minimal spectrum is pseudo elementary
with witnesses ϕk.

The first equivalence of the next theorem can be found as Theorem 3.4. in
[He-Je].

Theorem 9.3. The following are equivalent for every reduced ring A:
(i) The set {D(f) ∩ (SpecA)min | f ∈ A} is closed under finite unions, and

(Spec A)min is compact
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(ii) For all f ∈ A there is some g ∈ A such that f ·g = 0 and f + g is a non
zero-divisor of A.

(iii) The total ring of quotients Tot A of A is von Neumann regular.

Proof. (i)⇔(ii) is Theorem 3.4. in [He-Je].
(ii)⇒(iii). Take f ∈ A. It is enough to show that there is y ∈ Tot(A) with

f2

1 ·y = f
1 in Tot(A). By (ii), there is g ∈ A such that f ·g = 0 and f+g

1 is a unit in
Tot(A). Hence f(f + g) = f2 and y = 1

f+g ∈ Tot(A) has the required property.
(iii)⇒(ii). Take f ∈ A. By assumption, there are a, s ∈ A, s a non zero-divisor

of A with f
1

2·as = f
1 in Tot(A). Hence fs−f2a = 0 and g := s−fa satisfies fg = 0.

It remains to show that f + g = f + s− fa is not contained in any minimal prime
ideal p of A. As f ·g = 0 we have f ∈ p or s− fa = g ∈ p. Since s 6∈ p this is only
possible if f + s− fa 6∈ p. ¤

10. Non-axiomatizability of the compactness of minimal primes

We have seen that the class of reduced rings with compact minimal spectrum is
pseudo elementary, cf. the remark following 9.2. In this section we shall show that
the class is not axiomatizable.

Notation 10.1. Let A be a ring. For a ∈ A we define the annihilator size of a
to be

AS(a) = inf{k ∈ N | ∃ b1, ..., bk ∈ Ann(a) : Ann(a, b1, ..., bk) = (0),

which is an element of N ∪ {∞}. Moreover, we define

AS(A) := sup{AS(a) ∈ N ∪ {ω,∞} | a ∈ A}.

It is clear form the definition that AS(A) = ω if and only if {AS(a) | a ∈ A}
is an unbounded subset of N. Moreover, AS(A) = ∞ if and only if there is some
a ∈ A such that AS(a) = ∞, which means that the

{k ∈ N | ∃ b1, ..., bk ∈ Ann(a) : Ann(a, b1, ..., bk) = (0) = ∅.
Corollary 10.2. (i) A reduced ring A has compact minimal spectrum if and

only if AS(A) ≤ ω.
(ii) A pseudo-elementary class C of reduced rings with witnesses ϕk from 9.2

is elementary if and only if there is some K ∈ N with AS(A) ≤ K for all
A ∈ C.

Proof. (i) holds by 9.2, and (ii) holds by 3.2. ¤

Remark 10.3. Suppose (Spec A)min is compact, K ∈ N and for all f1, ..., fK+1 ∈ A
there are g1, ..., gK ∈ A such that

(D(f1) ∪ ... ∪D(fK+1)) ∩ (Spec A)min = (D(g1) ∪ ... ∪D(gK)) ∩ (Spec A)min.

Then AS(A) ≤ K, as follows from 9.2 and 9.1.

If K = 1, then the converse of the implication in the Remark also holds true, cf.
Theorem 9.3. Note that AS(A) = 1 is equivalent to item (ii) of 9.3.
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10.4. Open problem. Let A be a ring with AS(A) ∈ N. Does there exist some
K ∈ N such that for all f1, ..., fK+1 ∈ A there are g1, ..., gK ∈ A with

(D(f1) ∪ ... ∪D(fK+1)) ∩ (SpecA)min = (D(g1) ∪ ... ∪D(gK)) ∩ (SpecA)min?

We are asking for a weak converse of Remark 10.3.

For a while it was an open question whether AS(A) = 1 is implied by the
compactness of (Spec A)min. However, Quentel constructed a ring A with compact
minimal prime spectrum such that AS(A) ≥ 2 (cf. [Qu]; see also [Gl], p.117 ff).
We present a construction that is a considerably more general than Quentel’s, but
was inspired by his method. We construct a reduced ring A with compact minimal
spectrum such that AS(A) = ω (cf. Theorem 10.16 below). Recall from 3.4, that
AS(A) = ω is equivalent to saying that some (countable) ultra power of A does not
have compact minimal spectrum. In particular the existence of our ring shows that
the class of reduced rings with compact minimal spectrum is not elementary.

We start by setting up a framework for our construction. This includes the
notion of so-called T-algebras, as well as some of their basic properties.

Throughout, C denotes an algebraically closed field of arbitrary characteristic.
Given any set I, we consider the C-algebra CI of functions from I to C. Any
set map p : J → I defines the homomorphism p∗ : CI → CJ , a → a ◦ p. We
consider C-algebras A together with injective homomorphisms ϕA : A → CI . Such
homomorphisms are called representations as function rings. A map from one repre-
sentation ϕA : A → CI to another one, ϕB : B → CJ , consists of a homomorphism
f : A → B and a set map p : J → I, such that p∗ ◦ ϕA = ϕB ◦ f .

The evaluation at an element i ∈ I is a homomorphism î : A → C. We define
Î := {ker î | i ∈ I}.

Lemma 10.5. (i) Î ⊆ (SpecA)max.
(ii)

⋂
Î = {0}, in particular Jac A = {0}.

(iii) (Spec A)min ⊆ Î
con

.

Proof. (i) holds since C ⊆ A, hence every C-algebra homomorphism A −→ C is
surjective. (ii) holds since f 6= 0 means f(i) 6= 0 for some i ∈ I, thus f /∈ ker(̂i).
(iii) follows from (ii) and 2.8. ¤

The notation for zero sets and co-zero sets of elements of CI has been introduced
before: Given a ∈ CI we write ZI(a) = {i ∈ I | a(i) = 0} and CozI(a) = I \ ZI(a).
If a ∈ A then we set ZI(a) = ZI(ϕ(a)) and CozI(a) = CozI(ϕ(a)).

We consider the following condition on A:

(+) for every a ∈ A there are n ∈ N and b1, ..., bn ∈ A with
ZI(a) = CozI(b1) ∪ ... ∪ CozI(bn).

Lemma 10.6. If A satisfies condition (+), then (Spec A)min = Î
con

, and it follows
that (Spec A)min is a boolean space.

Proof. We show that, by assumption (+), there are no proper specializations in the

spectral subspace Î
con

of Spec A: Assume by way of contradiction that p Ã q is
a proper specialization in Î

con

. Then there is some a ∈ A with a ∈ q \ p. Since

the prime ideals belong to Î
con

we conclude that ZI(a) 6= ∅ and CozI(a) 6= ∅.
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According to condition (+) we write ZI(a) =
⋃n

ν=1 D(bν). It follows that a · bν = 0
for all ν, hence D(a) ∩D(bν) = ∅, and V (a) ⊇ ⋃n

ν=1 D(bν).

We claim that the sets V (a) ∩ Î
con

and (
⋃n

ν=1 D(bν)) ∩ Î
con

are equal. Assume
that there is some element

r ∈ V (a) ∩ Î
con

\
(

n⋃
ν=1

D(bν)

)
= V (a) ∩

n⋂
ν=1

V (bν) ∩ Î
con

.

Since we are inside Î
con

there must be some element i ∈ ZI(a) ∩⋂n
ν=1 ZI(bν). But

this is impossible by the choice of b1, . . . , bn. The contradiction yields V (a)∩ Î
con

=

(
⋃n

ν=1 D(bν)) ∩ Î
con

.
Because q ∈ V (a) we now conclude that y ∈ ⋃n

ν=1 D(bν). The set
⋃n

ν=1 D(bν) is
open, hence closed under generalization. Therefore it contains the generalization p
of q. But then there is some ν with p ∈ D(a) ∩ D(bν), which is impossible. This

contradiction proves our claim. There are no proper specializations in Î
con

.
From 10.5(iii) we know that (Spec A)min ⊆ Î

con

. If the containment is proper

then any element q ∈ Î
con

\(SpecA)min has a proper generalization p in (Spec A)min,

and there is a proper specialization in Î
con

. But we have seen that this is impossible.
¤

From 10.6 and 10.5(i) we see that, assuming (+), Î consists of points that are
both minimal and maximal in Spec A.

Definition 10.7. A representation ϕA : A → CI is called a T-algebra, if every
non-constant function from A has a zero in I.

Suppose that ϕA : A → CI is a representation of a C-algebra and that p : J → I
is a surjective map of sets. Then the homomorphism p∗ : CI → CJ is injective and
the composition p∗ ◦ ϕA : A → CJ is a representation as well. Moreover for every
a ∈ A we have ZJ (a) = p−1(ZI(a)), i.e., if ϕA is a T-algebra, then p∗ ◦ ϕA is a
T-algebra as well.

Observe that T-algebras exist: Let ϕ be the canonical monomorphism from the
polynomial ring C[X] into the ring of functions CC . Since C is algebraically closed,
every non-constant polynomial has a zero in C. Thus, ϕ : C[X] → CC is a T-
algebra. If p : I → C is a surjective map, then the composition p∗ ◦ϕ : C[X] → CI

is also a T-algebra.
Here are some simple properties of T-algebras:

Lemma 10.8. If ϕA : A → CI is a T-algebra then
(i) an element a ∈ A is constant, i.e., belongs to C, if and only if there is some

b ∈ A such that ZI(a) = CozI(b);
(ii) the only idempotent elements of A are 0 and 1.

In particular, Spec A is connected and A is von Neumann regular if and only if
A = C.

Proof. (i). If a ∈ C, then trivially ZI(fa) = CozI(b) where b = 0 if a 6= 0 and g = 1
if a = 0. Conversely, let ZI(a) = CozI(b). Pick some c ∈ C \{0, 1}. Then a− b and
b− c · a both do not have any zeroes in I. Since A is a T-algebra, this implies that
a−bg, b−c·a ∈ C. It follows a = (1−c)−1·(1−c)·a = (1−c)−1·((a−b)+(b−c·a)) ∈ C.
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(ii). If e ∈ A with e2 = e, then ZI(e) = CozI(1− e) and (i) says e ∈ C. ¤

In [Qu], Quentel constructs a T-algebra A satisfying (+) such that A 6= C. Then
Spec Amin is compact (by 10.6) and we note that AS(A) ≥ 2: Given a ∈ A \ C,
assume that V (a) ∩ (SpecA)min = D(b) ∩ (SpecA)min for some b ∈ A. Then
ZI(a) = CozI(b) (10.6), and a is constant by 10.8(i), a contradiction.

We present another construction that was inspired by Quentel’s method. It
leads to T-algebras whose behavior with regard to zero sets and co-zero sets can be
prescribed rather freely.

We fix a representation ϕA : A → CI of a C-algebra, a non-empty subset M of
A \C and an integer k ≥ 2. Starting from these data we construct an extension of
ϕA:
• We consider the affine space Ck and its subset T := Ck \{0}. Then we form the

possibly infinite dimensional affine space (Ck)M and its subset T M .
• The affine space (Ck)M has projections onto the coordinates, which are denoted

by tκ,a, κ ∈ {1, . . . k}, a ∈ M . The restriction of a coordinate function to T M

is also denoted by tκ,a. Given an element x ∈ (Ck)M we write xκ,a = tκ,a(x).
Thus, x will be represented by the family (xκ,a)(κ,a)∈{1,...,k}×M . The coordinate
functions tκ,a(x) belong to the ring CT

M

.
• We form the product I × T M and consider the projection πI : I × T M → I.

The rings CI×T M

and (CT
M

)I will be identified canonically. The projection πI

defines the ring homomorphism π∗I : CI → CI×T M

= (CT
M

)I . The maps πi :
T M → {i} × T M ↪→ I × T M define homomorphisms π∗i : CI×T M

= (CT
M

)I →
CT

M

. If we view (CT
M

)I as a direct product of rings then this is the projection
onto the i-th component. We observe that the composition π∗i ◦ π∗I ◦ ϕA : A →
CT

M

maps a ∈ A to the constant function a(i) ∈ CT
M

.
• The projection πM : I × T M → T M yields a ring homomorphism π∗M : CT

M →
CI×T M

. From the point of view of the direct product (CT
M

)I this is the diagonal
map. The images of the coordinate functions tκ,a are denoted by Tκ,a.

• If a ∈ M then we define χa ∈ CI×T M

to be the characteristic function of
ZI×T M (a) = ZI×T M (π∗I ◦ ϕA(a)).

• For κ ∈ {1, ..., k} and a ∈ M we define

Sκ,a = χa ·Tκ,a ∈ CI×T M

.

Hence for x ∈ T M and i ∈ I we have

Sκ,a(i, x) =

{
xκ,a if a(i) = 0
0 if a(i) 6= 0.

• We define AM to be the C-subalgebra

π∗M ◦ ϕA(A)[Sκ,a | (κ, a) ∈ {1, ..., k} ×M ]

of CI×T M

. The inclusion homomorphism is denoted by ϕAM . Each element
b ∈ AM has a representation b = P (Sκ,a | (κ, a) ∈ {1, ..., k} ×M), where P ∈
A[Xκ,a | (κ, a) ∈ {1, ..., k}×M ] is a polynomial in the variables Xκ,a. The image
of AM under the homomorphism π∗i is the polynomial ring

C[tκ,a | (κ, a) ∈ {1, ..., k} ×M, a(i) = 0].



30 NIELS SCHWARTZ, MARCUS TRESSL

We shall now analyze the properties of the C-algebra AM and its representation
ϕAM

.

The entire construction we have exhibited depends on the chosen integer k and
the chosen set M . The integer will be fixed when we study AM , but we shall vary
the set M . If N ⊆ M then T M = T N ×T M\N . The projection πN,M : I×T M −→
I × T N is surjective and yields the injective homomorphism π∗N,M : CI×T N −→
CI×T M

. We identify AN with its image under π∗N,M . Then AM is the union of
the directed set of sub-algebras AN , where N varies in the set of finite subsets of
M . Note that every finite subset of AM is contained in some AN , N ⊆ M finite.
Therefore in many arguments that involve only finitely many elements of AM we
may assume that M itself is finite.

The following results are concerned mostly with zero sets and co-zero sets of
elements of AM .

Remark 10.9. If M is finite, then T M is a Zariski open subset of (Ck)M , and the
Zariski dimension of (Ck)M \ T M is k · (|M | − 1). Moreover, if r ≤ k − 1 and
f1, ..., fr are polynomial functions on (Ck)M that have a common zero, then the
zero set Z(Ck)M (f1, ..., fr) has dimension at least k ·|M |−r ≥ k ·|M |−(k−1). Hence
Z(Ck)M (f1, ..., fr) can not be contained in (Ck)M \ T M , and ZT M (f1, ..., fr) 6= ∅.
Lemma 10.10. An element b ∈ AM belongs to A if and only if every polynomial
π∗i (b) is constant.

Proof. If b ∈ A then π∗i (b) is the constant polynomial b(i). Conversely, suppose
that each π∗i (b) is constant. We write b = P (Sκ,a | κ, a, where

P =
∑

aωXω ∈ A [Xκ,a | κ, a]

and ω is a multi-index. If aω = 0 for all ω 6= 0, then b = a0 ∈ A. Otherwise, pick
ω 6= 0 with aω 6= 0. There is some i ∈ I with aω(i) 6= 0. Then the polynomial
π∗i (b) =

∑
aω(i)Xω is non constant, which contradicts our assumption. ¤

Lemma 10.11. If a ∈ M , then

ZI×T M (a) =
k⋃

κ=1

CozI×T M (Sκ,a).

Proof. Observe that ZI×T M (a) = π−1
I (ZI(a)). If (i, x) ∈ ZI×T M (a), then a(i) = 0

and Sκ,a(i, x) = xκ,a. Since x ∈ T M , there is some κ ∈ {1, ..., k} with Sκ,a(i, x) =
xκ,a 6= 0. We see that (i, x) ∈ CozI×T M (Sκ,a).

For the reverse inclusion, suppose that (i, x) /∈ ZI×T M (a), i.e., a(i) 6= 0. Then
Sκ,a(i, x) = 0 for all κ. ¤

Lemma 10.12. If b ∈ AM \A, then ZI×T M (b) is not a finite union of co-zero sets
of elements of AM .

Proof. Assume by way of contradiction that

ZI×T M (b) =
r⋃

ρ=1

CozI×T M (aρ).

There is a finite subset N ⊆ M such that b, a1, . . . , ar ∈ AN . We may replace M
by N , i.e., we may assume that M is finite.
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Since b /∈ A, 10.10 gives some i ∈ I such that

π∗i (b) ∈ C[tκ,a | (κ, a) ∈ {1, ..., k} ×M, a(i) = 0]

is not a constant polynomial. Hence Z(Ck)M (π∗i (b)) ⊆ (Ck)M is a proper Zariski-
closed set, and, by 10.9, ZT M (π∗i (b)) 6= ∅, which means that there is some x ∈ T M

with (i, x) ∈ ZI×T M (b). The assumption yields an index ρ ∈ {1, ..., r} with (i, x) ∈
CozI×T M (aρ) ⊆ ZI×T M (b). This shows that the proper Zariski-closed subset
Z(Ck)M (π∗i (b)) ⊆ (Ck)M contains the nonempty Zariski open set CozT M (π∗i (aρ)),
which is impossible. This contradiction finishes the proof. ¤

Lemma 10.13. If b ∈ A and ZI×T M (b) is the union of k−1 co-zero sets of elements
of AM , then ZI(b) is the union of k − 1 co-zero sets of elements of A.

Proof. Again we may assume that M is finite. Let

ZI×T M (b) =
k−1⋃
ρ=1

CozI×T M (bρ)

with bρ ∈ AM and let

Pρ =
∑
ω

aρ,ωXω ∈ A [Xκ,a|κ, a]

with bρ = Pρ(Sκ,a | κ, a). We show that ZI(b) =
⋃k−1

ρ=1 CozI(aρ,0).
If aρ,0(i) 6= 0, then the constant term of the polynomial π∗i (bρ) is not 0, and there

is some x ∈ T M with π∗i (bρ)(x) 6= 0. Then (i, x) ∈ CozI×T M (bρ) ⊆ ZI×T M (b),
which means b(i) = 0.

Conversely suppose b(i) = 0. Then T M = ZT M (π∗i (b)) ⊆ ⋃k−1
ρ=1 CozT M (π∗i (bρ)).

Therefore
k−1⋂
ρ=1

Z(Ck)M (π∗i (bρ)) ⊆ (Ck)M \ T M .

By 10.9 we conclude that
⋂k−1

ρ=1 Z(Ck)M (π∗i (bρ)) = ∅. Then the constant coefficient
of one of the polynomials π∗i (bρ) is not 0. The constant coefficient of π∗i (bρ) is
aρ,0(i) 6= 0, and it follows that i ∈ ⋃k−1

ρ=1 CozI(aρ,0). ¤

Now the construction of the algebra AM , together with its representation in
CI×T M

, will be applied recursively to produce an increasing sequence of C-algebras
with representation: Let 2 ≤ k0 ≤ k1 ≤ ... be an increasing sequence of integers.
We define
• A−1 = C.
• I0 = C, A0 = C[X], the univariate polynomials considered as a subalgebra of

CC .
• Suppose that An ⊆ CIn has been defined. Then we apply the construction above

using the following data:
– The C-algebra An ⊆ CIn , and
– the integer kn, and
– the subset Mn = An \An−1.

With Tn = Ckn \{0} and In+1 = In×T Mn
n the construction yields the C-algebra

An+1 ⊆ CIn+1 .
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Finally we form the union of the increasing sequence (An ⊆ CIn)−1≤n of C-algebras
with representation: First we define the representation set, which is the projective
limit I∞ = lim

←
In, where the transition maps are the canonical projection πn,n+1 :

In+1 → In. Let πn,∞ : I∞ → In be the canonical maps from the projective limit
to the components. We use the injective homomorphisms π∗n,∞ to consider each
CIn as a sub-algebras of CI∞ . Thus, the CIn form an increasing sequence of sub-
algebras of CI∞ . We identify An with its image and define A∞ =

⋃∞
n=−1 An. It is

obvious that A∞ is the direct limit of the sequence (An)−1≤n.

Lemma 10.14. Consider the following statements about an element a ∈ A∞.
(a) a ∈ An.
(b) There are elements a1, ..., akn

∈ A∞ such that ZI∞ =
⋃kn

ρ=1 CozI∞(aρ).
It is always true that (a) implies (b). If kn < kn+1, then also (b) implies (a).

Proof. (a)⇒(b). Suppose that a ∈ Am \Am−1, where m ≤ n . By 10.11, ZIm+1(a)
is the union of km cozero sets of elements from Am+1. Pulling this back to I∞ via
πm+1,∞ we obtain (b) (note that km leqkn).
(b)⇒(a). Assume a /∈ An, say a ∈ Ar+1 \ Ar with r ≥ n. Suppose that s ≥ r + 1
is the least number such that ZIs(a) =

⋃kn

ρ=1 CozIs(aρ) with a1, . . . , akn ∈ As.
By 10.12 we know that r + 1 < s, in particular kn < kn+1 ≤ kr+1 ≤ ks. Since
a ∈ Ar+1 ⊆ As−1, 10.13 implies that ZIs−1(a) is a union of kn cozero sets of elements
of As−1, which contradicts the minimality of s. ¤

We shall now show that the construction we have presented produces T-algebras
if it is applied to T-algebras:

Proposition 10.15. (i) Suppose ϕA : A → CI is a T-algebra, that 2 ≤ k ∈ N
and M ⊆ A is nonempty. Then ϕAM

: AM → CI×T M

is a T-algebra.
(ii) If (ϕn : An → CI)n is a monotonically increasing sequence of T-algebras

with representations in the same ring of functions then ϕ :
⋃

n ϕnAn → CI

is a T-algebra.

Proof. (i). We have to show ZI×T M (b) 6= ∅ for every b ∈ AM \C. We may assume
that M is finite. If b ∈ A, then the claim follows from the hypothesis that A is a
T-algebra. Assume now that b /∈ A. By 10.10, there is some i ∈ I such that the
polynomial π∗i (b) ∈ C[tκ,a | κ, a] is not constant. Hence Z(Ck)M (π∗i (b)) 6= ∅, and,
by 10.9, also ZT M (π∗i (b)) 6= ∅. - Part (ii) is obvious. ¤

Finally, the previous results are combined to show that the class of reduced rings
with compact minimal prime spectrum is not axiomatizable. The main step is the
following

Theorem 10.16. (i) The representation ϕ∞ : A∞ −→ CI∞ constructed above
is a T-algebra satisfying condition (+).

(ii) If the sequence (kn)n is unbounded then the number of cozero sets that are
needed to write a zero set as a union of co-zero sets is unbounded. In
particular, AS(A∞) = ω.

(iii) If the sequence (kn)n is bounded with maximum k, then AS(A∞) = k.

Proof. (i). By 10.15, ϕ∞ : A∞ −→ CI∞ is a T-algebra. Condition (+) is satisfied
by the implication (a)⇒(b) of 10.14.
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(ii) follows from 10.14, (b)⇒(a).
(iii). It follows from 10.11 that AS(A∞) ≤ k, and 10.12 and 10.13 imply AS(A∞) ≥
k. ¤

Corollary 10.17. A∞ has compact minimal spectrum, but in case the sequence
(kn)n is unbounded, some ultrapower of A∞ does not have compact minimal spec-
trum. In particular, the class of all reduced rings with compact minimal spectrum
is not elementary.

Proof. We know from 10.16 (i) and 10.6 that A∞ has compact minimal spectrum.
The remaining part of the assertion follows from 10.16 (ii) and 3.4. ¤

11. Summary of axiomatizability

We give a summary of our results about the axiomatizability of classes of rings
defined by properties of their Zariski spectra. The table below is to be read as
follows: The entries in the first column contain properties of Spec A. The second
column contains the letters “Y” or “N”, according as the class of reduced rings
whose Zariski spectrum satisfies the property in the first column, is or is not first
order in the language of rings. The third column has to be read in the same manner
for the class of all rings. Note that, given an axiomatizable class C of rings, the
class of all reduced rings in C is elementary, too.

After each entry in the second and third columns, we give a reference to the text,
or, in the case of well-known facts, we just name the elementary class.

Spec A A reduced A not reduced
normal Y Y, 4.3
completeley normal N, 6.12 N
boolean Y, v. N. regular N, 6.8 and 6.7
singleton Y, fields N, 6.8 and 6.7
finite N, (∗) N
linear N, 6.12 N
inversely normal Y, 7.6(i) N, 7.6(ii)
inversely completely normal N, 7.6(iii) N
minimal points compact N, 10.17 N
minimal points singleton Y, domains N, 6.8 and 3.2
maximal points hausdorff Y Y, 4.5
maximal points boolean Y Y, 4.7
(SpecA)max proconstructible Y Y, 4.6
maximal points singleton Y Y, local rings

(∗). The class of reduced rings with finite spectrum is not elementary, since no free
ultra product of a family (An)∈N, An a product of n fields, has finite spectrum.

We point out that all classes of rings in the table are pseudo elementary.
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