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Abstract. Clustering is a core problem in data-mining with innumerable
applications spanning many fields. A key difficulty of effective clustering
is that for unlabelled data a ‘good’ solution is a somewhat ill-defined con-
cept, and hence a plethora of valid measures of cluster quality have been
devised. Most clustering algorithms optimize just one such objective (often
implicitly) and are thus limited in their scope of application. In this paper,
we investigate whether an EA optimizing a number of different clustering
quality measures simultaneously can find better solutions. Using problems
where the correct classes are known, our results show a clear advantage to
the multiobjective approach: it exhibits a far more robust level of perfor-
mance than the classic k-means and average-link agglomerative clustering
algorithms over a diverse suite of 15 real and synthetic data sets, sometimes
outperforming them substantially.

1 Introduction

The automation of the human ability to recognise patterns in data, and to induce
useful hypotheses from them, is the key goal of data-mining. A major branch of
this project is the development of methods for unsupervised classification of multi-
dimensional data, namely the clustering of data into homogeneous groups: by now
a classic Al problem with algorithms dating back to the 60s [15]. In a broad def-
inition, clustering of data might include the recognition and removal of outliers,
the recognition and focusing on key dimensions of the data (i.e. feature selection)
and the estimation of the correct number of clusters inherent to the data. In a
far more restricted definition, the k-clustering problem (on which we focus here)
simply requires us to find a partitioning of a set of data into k£ disjoint sets such
that some objective function operating on this partitioning, and employing a notion
of distance in the data space, is optimized. This restricted (but still very broad)
problem is NP-complete when stated as a question, and remains NP-complete for
many restrictions on the distance functions used and the nature of the objective
function, even when k = 2 [3].

Both classic and a vast array of new algorithms for k-clustering exist [12].
Common to almost all of them is the fact that they optimize either implicitly
or explicitly just one measure on the partitioning of the data. For example, k-
means [15] attempts to minimize the summed variance of points within each cluster
from their centroid. Although such a method is very effective on certain sets of
data, it is also clear that it will fail to find even very obvious cluster structure in
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other data sets. This is because variance is only a proxy for (i.e. one aspect of) a
more fuzzy ‘concept’ of true cluster structure. Thus, by focusing on just one aspect
of cluster quality, most clustering algorithms can fail catastrophically on certain
data-sets: they are not robust to variations in cluster shape, size, dimensionality
and other characteristics.

To combat this problem, practitioners in some fields (where time constraints are
secondary) are used to applying several different algorithms to their data, in the
hope or expectation that one of them will deliver a good solution. Subsequently,
these different partitionings can be tested in the real world: e.g. a biologist with
several hypothetical groupings of functionally-related genes can devise experiments
that test these alternatives. The idea central to our work is that in such a situation,
it may be better to generate alternative solutions using a single algorithm, but one
which explicitly optimizes multiple proxy measures of cluster quality — namely
a Pareto multiobjective EA [7]. This approach may offer greater flexibility and
variety in the measures that are used to optimize the clustering, affording higher
quality solutions, and, in the process, facilitate greater understanding of the data’s
structure. In future work we may incorporate feature selection, outlier-removal and
determination of &, all within a multiobjective EA framework. However, in this our
first paper on multiobjective clustering, we focus on the pivotal question whether
this approach can generate objectively high quality solutions.

Readers familiar with clustering research may notice similarities between our
proposed approach and other recent methods. Certainly, several EAs for cluster-
ing have been proposed ([16, 10, 14, 8]), though none to our knowledge have used
a Pareto multiobjective EA. Other recent work has also used the term ‘multiob-
jective’ with regard to clustering [13], but the approach was based on using an
ensemble of clustering algorithms [18] and then obtaining a consensus clustering
from these, similarly to the EA proposed in [10]. Our proposed approach, on the
other hand, optimizes different objectives explicitly in one clustering algorithm, en-
abling different tradeoffs to be explored during the clustering process. Its originality
derives from this.

The remainder of the paper is organized as follows. Section 2 describes our
multiobjective EA, including our selected representation and operators. The ob-
jective functions are discussed in Section 3. Section 4 briefly introduces the test
suite and points to supporting material where more information on this can be
found. Section 5 details our experimental set-up including comparison of our mul-
tiobjective EA to two single-objective versions as well as k-means and average-link
agglomerative clustering. Section 6 presents results and Section 7 concludes.

2 VIENNA: an EA for clustering

A multiobjective evolutionary algorithm (MOEA) for clustering was developed
through extensive preliminary experimentation on a diverse set of clustering prob-
lems. This algorithm, employing specialised initialisation and mutation
operators, is called VIENNA (for Voronoi Initialised Evolutionary Nearest-
Neighbour Algorithm).



2.1 PESA-II

We based VIENNA on the elitist MOEA, PESA-II, described in detail in [5] and [6].
Briefly, PESA-II updates, at each generation, a current set of nondominated solu-
tions stored in an external population (of non-fixed but limited size), and uses this
to build an internal population of fixed size to undergo reproduction and variation.
PESA-II uses a selection policy designed to give equal reproduction opportunities
to all regions of the current nondominated front; thus in the clustering application,
it should provide a diverse set of solutions trading off different clustering measures.
No critical parameters are associated with this ‘niched’ selection policy, as it uses
an adaptive range equalization and normalization of the objectives. PESA-II may
be used to optimize any number of objective functions, allowing us to simultane-
ously optimize several clustering measures, but in this paper we will use just two
(conceptually distant) measures as objectives, described in Section 3.

2.2 Representation Issues

PESA-II can be applied without changes to the clustering problem, given a suitable
representation of a partitioning, and related operators. A number of GA clustering
representations have been tried and compared in the literature, with seemingly no
clear overall winner [4]. In the end, we have chosen to use a straightforward repre-
sentation in which each gene represents a data item, and its allele value represents
the label of the cluster to which it is assigned. This means that for any parti-
tion, multiple genotypes code for it, i.e. it is a non-injective encoding — normally
thought to be undesirable [17]. This drawback is not serious, however, provided
there is not a significant bias or over-representation of certain solutions, and/or
we can design operators that work effectively and quickly with this coding. Re-
garding undesirable bias, the inherent frequency of solutions is free from bias: for
every solution that correctly partitions the data into k clusters, there are exactly k!
genotypes coding for it. Regarding operators, we have discovered an initialization
and mutation operator that work well with this coding, as described next.

2.3 Initialization based on random Voronoi cells

In preliminary work not reported here, we investigated an alternative represen-
tation for our EA to use, based on optimizing Voronoi cells. This representation
was inspired by [16], where an EA was used to optimize the location of k cluster
‘centers’, to minimize overall variance when the data points were assigned to the
nearest center. This GA achieves results similar to (but slightly better than) the
k-means algorithm. Our idea was to extend this representation by allowing the EA
to use j > k cluster ‘centers’ (for a partitioning of k clusters) to enable it to cope
better with non-hyperspherical, and especially elongated and intertwined, clusters.
In our representation, in addition to the location of the j centers, each center’s
label is also evolved on the genotype. The kind of clustering solution that this
representation affords is depicted in Figure 1.

Although this representation performs well with PESA-II correctly configured,
we have found it slightly inflexible compared with the direct encoding we have



Fig. 1. The kind of complex partitioning boundary enabled by a Voronoi cell genotype
coding. Here there are two clusters (k = 2) but j = 6 centers (squares) have been used to
cluster the data. The label of each center (here visualized by its colour) takes a value in
1..k. Both the label and location of each center are coded by the genotype

opted for, as well as adding an unwelcome parameter j, to be chosen. However,
we found that the Voronoi coding is very effective at generating diverse and high-
quality clustering solutions that can be used to ‘seed’ our direct-coded EA. The
initialisation that we have found effective, and which we use in all our experiments,
is to set j = 2k, and to place the cluster centers uniformly at random in a rect-
angular polytope centered on the data, and of side-length twice the range of the
data, in each objective. The labels associated with each of the j centers is also
assigned uniformly at random, from which it is possible to label all of the data
items. We then decode this partitioning into our direct coding, and the Voronoi
representation is no longer used. This initialization is used for all members of the
initial population in VIENNA.

2.4 Directed mutation based on nearest neighbours

We have explored numerous recombination and mutation operators in preliminary
investigations not reported here, including Grouping GA-based methods [9], as well
as multi-parent recombinations based on expectation maximization of an ensem-
ble [18]. Overall, we have found it very difficult to design operators that enable a
GA to explore broadly enough to escape the very strong local attractors found in
some problems when optimizing certain objectives (e.g. variance on non-spherical
clusters), without descending into a fruitless random search of what is a very large
search space, and whilst also enabling small clustering differences to be explored.

However, in the end, we have found that a single, deceptively simple, directed
mutation operator (and no crossover) is sufficient to drive the search. This muta-
tion operator is applied to every gene with probability p,,, which we set to 1/N
in all experiments, where N is the size of the data set. When a gene undergoes
mutation to a different allele value (i.e. cluster), a number g of other genes are
simultaneously ‘moved’ with it into the same target cluster (and the genotype is
updated accordingly). The particular data items that undergo this move are the
g nearest neighbours to the data item coded for by the initially mutated gene.



The integer g itself is chosen, independently at each mutation event, uniformly at
random in 0..N/k.

This operator enables very large changes to result from a single mutation, yet
constrains them to be ‘reasonable’ moves which respect local distance relations. On
the other hand, very small changes in the clustering solution are also possible. The
operator works in linear time since the nearest neighbours of every data item can
be pre-computed once at the beginning of the EA’s run.

3 Objective Functions for Clustering

Given a candidate partitioning of the data, numerous ‘internal’ measures for esti-
mating its quality exist [11]. These measures are based on intuitive notions of the
properties of a desirable partitioning — such as the compactness of clusters and
their clear separation.

In the EA we present in this paper, we optimize two such internal measures,
described next, though we have tried several others in our preliminary testing.

3.1 Variance

The variance of a clustering solution reflects the overall intra-cluster ‘spread’ of the
data. It is computed as
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where C is the set of all clusters, uy is the centroid of cluster Cj and d(.,.) is
the chosen distance function (see Section 4). As an objective, variance should be
minimized.

3.2 Connectivity

As a second objective function, we propose a new measure, connectivity, which
evaluates the degree to which neighbouring datapoints have been placed in the
same cluster. It is computed as
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nn;(j) is the jth nearest neighbour of datum ¢, and h is a parameter determining
the number of neighbours that contribute to the connectivity measure. The value of
connectivity lies in the interval [0,1], and as an objective, it should be maximized.
Connectivity, unlike variance, is relatively indifferent to the shape of clusters, and
we have found it robust to the chosen value of h, independently of the data set.
It is also fast to compute as the nearest neighbour list can be pre-computed. One
drawback of this measure is that trivial attractors, with all, or nearly all, data
items placed in the same cluster, exist.



4 Data Sets

Clustering problems vary greatly along a number of important dimensions and
characteristics. For this reason, it is incumbent on the researcher developing new
clustering algorithms to test them on a range of problems that exhibit this variety
as much as possible.

We use eight synthetic and seven real data sets; the former allow us to control
several characteristics in isolation, while the latter help to verify that our results
are ultimately meaningful in real applications. The distance functions used are
Euclidean distance and Cosine similarity, respectively for the synthetic and real
data sets.

4.1 Synthetic Data

All eight of our synthetic data sets consist of 500 two-dimensional data items,
enabling us to easily visualise the results of a clustering. Pictures and explanations
for all these sets are available at [1] but we briefly describe them below. Note: these
data sets are defined in terms of distributions and that the actual data points are
sampled from these in each successive algorithm run.

Three of the data sets (Squarel, Square3 and Squareb) consist of a square
arrangement of four clusters of equal size and spread, each cluster being a Gaussian
distribution about a central point. The difference between the sets is the degree
of overlap of the four clusters. In Squarel, the clusters touch but hardly overlap,
whereas for Squareb the overlap is so much that there is little density difference
moving from one cluster to the next.

The next three data sets (Sizesl, Sizes3 and Sizesb) are based on Squarel, but
change the relative cluster sizes such that the ratio of the smaller to the largest
cluster is respectively 2, 6, and 10. Note: the spread of the clusters is unchanged.

The last two of our synthetic data sets (Smile and Longl) contain different,
non-spherically shaped clusters, making it more difficult for methods based on
minimizing variance. For pictures of these demanding problems, see [1].

4.2 Real Data

For the real data sets we chose seven from the UCI Machine Learning Repository [2]
to obtain a good variety in data dimensionality, size of the data set, number of
clusters and evenness/unevenness of the cluster sizes. The sets we chose are Der-
matology, Digits, Iris, Wine, Wisconsin, Zoo and Yeast. They range up to size 3498
and dimension 34, with up to 10 clusters. For complete details also see [1]. Note:
we permute the data in these sets on each algorithm run.

5 Experimental Setup

In our experiments, we compare VIENNA running with two objectives — variance
and connectivity — against two classical clustering algorithms with proven perfor-
mance across a wide range of data sets: k-means and average-link agglomerative



clustering. Moreover, to establish the usefulness of a multiobjective approach we
also compare against a single-objective version of VIENNA, using identical opera-
tors and parameter settings, but optimizing only one objective.

5.1 VIENNA Configuration

The parameter settings for VIENNA, held constant over the entire data set, are
given in Table 1. There are three versions of the algorithm: a multiobjective one
which we label, VIENNA-moo; and two single-objective versions, named VIENNA-
var and VIENNA-conn. In addition to the objective(s) to optimize, all VIENNA
algorithms use a constraint that no cluster should be empty, and enforce this con-
straint by penalising the value(s) of each objective.

Table 1. Parameter settings for all VIENNA algorithms

Parameter setting

Number of generations (synthetic data) 500

Number of generations (real data) 40[VN

External population size 100 (VIENNA-moo only)
Internal population size 200

Initialization random Voronoi cells (see section 2.3)
Mutation type g nearest neighbours (see section 2.4)
Mutation rate p., 1/N

Recombination none

VIENNA-moo objective functions variance and connectivity (h = 10)
VIENNA-var objective function variance only
VIENNA-conn objective function connectivity (h = 10) only
Constraints empty clusters penalised

5.2 Average-link agglomerative clustering and k-means

We use a standard implementation of average-link agglomerative clustering, [20],
which is deterministic for a given data order. The implementation of the k-means [15]
algorithm is based on the batch version, that is, cluster centers are only recomputed
after the reassignment of all data items. As k-means can sometimes generate empty
clusters, empty clusters are identified in each iteration and are randomly reinitial-
ized. Obviously, this enforcement of the correct number of clusters can prevent
convergence, and we therefore set the maximum number of iterations to 100. To
avoid suboptimal solutions k-means is run repeatedly (100 times per ‘run’) using
random initialisation, and only the best result in terms of minimum variance is
returned.

5.3 Data collection and processing

For each problem, we perform 50 independent runs of the VIENNA algorithms and
collect data on the entire evolution of the population. In particular, for VIENNA-
moo we collect the final external population of nondominated points. For k-means



and average-link agglomerative clustering we also perform 50 independent runs and
collect the final output solution obtained in each run.

We evaluate solutions objectively using the F-measure [19], which combines
information on the purity and the completeness of the generated clusters with
respect to the known, real class memberships. This measure is limited to the range
[0, 1], where 1 reflects a perfect agreement with the correct partitioning.

Importantly, the F' measure we quote for VIENNA-moo will be for the solution
in the final external population with the best F' measure value. This is in-line with
our philosophy that in many applications we would be able to test a small number
of alternative clustering solutions.

6 Results

The results of the F-measure are presented graphically as boxplots [21] in Figure 2.
On several datasets the solutions generated by VIENNA-moo are better than those
of the other algorithms by a large margin. On Iris, Yeast, Zoo, Longl, and Smile,
its superiority is clear. Equally impressive, however, is the fact that it exhibits a
far more robust performance than any other algorithm: indeed, the sample median
F measure of the VIENNA-moo solutions is unbeaten across all data sets (not
significance tested), and is even slightly better than that of the multiply-restarted
k-means algorithm on its ‘home territory’ of the Sizes and Square series of data-sets,
with all-spherical clusters. Tabulated results are available at [1].

Further graphical results are also available at [1], including figures displaying
the Pareto fronts obtained on some problems, and plots of the time-evolution of
the F' measure and the two objectives. A number of these results indicate that
the global optima on variance and/or connectivity alone do not correspond with
the global optimum on the F' measure. It is only by exploring other nondominated
local optima (trading off these two objectives) that the EA is able to find good F'
measure solutions. This exploration is possible as a direct consequence of optimizing
multiple objectives.

7 Conclusion

Most clustering algorithms operate by optimizing (either implicitly or explicitly)
a single measure of cluster solution quality. Such methods may perform well on
certain data-sets but lack robustness with respect to variations in cluster shape,
proximity, evenness and so forth. In this paper, we have proposed an alternative
approach: to optimize simultaneously over a number of objectives using a multiob-
jective EA. We demonstrated that with this approach a greater robustness may be
achieved — solutions selected from the generated nondominated front were never
worse than those generated by either of two classic algorithms, across all 15 of
our data sets, and were substantially better on a number of them, including three
of seven real data sets from the UCI Machine Learning Repository. Much further
work is needed to investigate using different and more objectives, and to test the
approach still more extensively. However, we will first concentrate on the important
issue of developing methods for identifying the best candidate solution(s) from the
Pareto front, or reducing the number of solutions that must be assayed. We have
already begun with this, and have found it possible to cluster the nondominated
front to just a handful of significantly different solutions on the data sets used here.
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Fig. 2. Boxplots [21] giving the distribution of F' measure values achieved for 50 runs of
each algorithm on the 15 data sets. Key: A=average-link agglomerative clustering, K =
k-means, Vc=VIENNA-conn, Vmo=VIENNA-moo, Vv=VIENNA-var. Median and IQR
values have also been tabulated and can be found at [1]

Acknowledgments

JH gratefully acknowledges support of a scholarship from the Gottlieb Daimler
and Karl Benz Foundation. JK is supported by a David Phillips Fellowship from
BBSRC.



10

References

1.
2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Supporting material. http://wwwcip.informatik.uni-erlangen.de/~sijuhand/vienna/
C. Blake and C. Merz. UCI repository of machine learning databases. Technical
report, Department of Information and Computer Sciences, University of California,
Irvine, 1998. http:://www.ics.uci.edu/~mlearn/MLRepository.html

P. Brucker. Optimization and Operations Research, chapter On the complexity of
clustering problems, pages 45-54. Springer-Verlag, New York, 1977.

R. M. Cole. Clustering with genetic algorithms. Master’s thesis, University of Western
Australia, Nedlands 6907, Australia, 1998.

D. W. Corne, N. R. Jerram, J. D. Knowles, and M. J. Oates. PESA-II: Region-based
Selection in Evolutionary Multiobjective Optimization. In Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO’2001), pages 283-290. Morgan
Kaufmann Publishers, 2001.

D. W. Corne, J. D. Knowles, and M. J. Oates. The Pareto Envelope-based Selection
Algorithm for Multiobjective Optimization. In Proceedings of the Parallel Problem
Solving from Nature VI Conference, pages 839-848. Springer, 2000.

K. Deb. Multi-Objective Optimization using Fvolutionary Algorithms. John Wiley &
Sons, Chichester, UK, 2001.

A. Demiriz, K. Bennett, and M. Embrechts. Semi-supervised clustering using genetic
algorithms. Technical report, Rensselaer Polytechnic Institute, Troy, New York, 1999.
E. Falkenauer. Genetic Algorithms and Grouping Problems. John Wiley & Sons,
1998.

W. Gablentz, M. Képpen, and E. Dimitriadou. Robust clustering by evolutionary
computation. 5th Online World Conference on Soft Computing in Industrial Appli-
cations (WSC5), The Internet, 2000.

M. Halkidi, M. Vazirgiannis, and I. Batistakis. Quality scheme assessment in the
clustering process. In Proceedings of the Fourth Furopean Conference on Principles
of Data Mining and Knowledge Discovery, volume 1910 of LNCS, pages 265-267.
Springer-Verlag, Heidelberg, Germany, 2000.

A. K. Jain, M. N. Murty, and P. Flynn. Data clustering: a review. ACM Computing
Surveys, 31(3):264-323, 1999.

M. Law, A. Topchy, and A. K. Jain. Multiobjective data clustering. In Proceedings of
the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
June 2004. To appear.

J. A. Lozano and P. Larranaga. Applying genetic algorithms to search for the best
hierarchical clustering of a dataset. Pattern Recognition Letters, 20(911-918), 1999.
L. MacQueen. Some methods for classification and analysis of multivariate observa-
tions. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and
Probability, volume 1, pages 281-297. University of California Press, Berkeley, 1967.
U. Maulik and S. Bandyopadhyay. Genetic algorithm-based clustering technique.
Pattern Recognition, 33:1455—-1465, 2000.

N. J. Radcliffe. Equivalence class analysis of genetic algorithms. Complex Systems,
5:183-205, 1991.

A. Topchy, A. K. Jain, and W. Punch. A mixture model for clustering ensembles. In
Proceedings SIAM Conf. on Data Mining, 2004. In press.

C. van Rijsbergen. Information Retrieval, 2nd edition. Butterworths, London, UK,
1979.

E. Vorhees. The effectiveness and efficiency of agglomerative hierarchical clustering in
document retrieval. PhD thesis, Department of Computer Science, Cornell University,
1985.

E. W. Weisstein. Box-and-whisker plot. From MathWorld — A Wolfram Web Re-
source. http://mathworld.wolfram.com/Box-and-WhiskerPlot.html



