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1 Synthetic data

Here, we describe the two-dimensional synthetic data sets used to study the
robustness of VIENNA towards different cluster properties, in particular
non-spherically shaped, overlapping and unequally-sized clusters. Table 1
gives the definition of the benchmarks, and plots of one sample instance for
each one of them can be found in the accompanying .pdf files.

All clusters (except for two in the Smile data set) are described by two-
dimensional normal distributions N (jZ,&). The number of clusters, the sizes
of the individual clusters, and the mean vector i and vector of the standard
deviation & for each normal distribution are manually fixed. In each run of
the experiments, a new set of data is sampled from these distributions.

The Square and Sizes data sets consist of four clusters, arranged in a
square, which are generated by normal distributions with a standard devi-
ation of 2 in both dimensions. In the Square data sets all clusters are of
equal size (125 data items each), and Squarel, Square3 and Square5 only
differ by the distance between the individual clusters (i.e. the length of the
edges of the square), which is 10, 8 and 6 respectively. They are employed in
order to study the relative sensitivity of the algorithms to increasing overlap
between clusters. In the Sizes data sets, edge length and standard deviation
are kept constant, and, instead, the relative size of the individual clusters is
varied. In particular, the ratio between the smallest and the largest cluster
on the Sizesl, Sizes3 and Sizesb data set is 2, 6 and 10 respectively. By this
means we investigate the algorithms’ sensitivity to unequally-sized clusters.

The last two of our synthetic data sets contain at least one non-spherical
shaped cluster, making it difficult for methods based on minimizing variance.
The Longl data set consist of two horizontal, long elliptical Gaussian clus-
ters, one positioned directly above the other (not overlapping), at a very
small distance compared with the length of each cluster. The minimum
variance solution on this clustering problem splits the two clusters down the
middle, producing a result that is very far from the true cluster structure.
The last data set, name Smile consists of four equally-sizes clusters — two
eyes, a long curved smile, and a circular cluster enclosing them. The density
of points in the eyes (which are generated by Normal Distributions) is much
higher than in the surround or the smile, which are comparatively far more
spread out and are geometrically constructed.



Table 1: Summary of the synthetic data sets. D is the dimensionality, C'
gives the number of clusters, and IV; gives the number of data elements for
cluster ¢. The test sets are generated by either multidimensional Normal
or Uniform Distributions N (ji, &), where [ is the vector of means and & is
the vector of the standard deviations. Only for the Smile data set circles
C(fi,r, start..end) are additionally used, where i is the centre of the circle,
r is its radius, and start..end described the part of the circle that is actually
drawn.

Name C N; D Source
Squarel 4 4 x 125 2 N([0,0],[2,2]), N([10,10],[2,2]),
N([0,10],2,2]), N([10,0],[2,2])
Square3 4 4 x 125 2 N([0,0],[2,2]), N([8,8],[2,2]),
N([0,8],[2,2]), N([8,0],[2,2])
Squareb 4 4 x 125 2 N([0,0],[2,2]), N(]6,6],[2,2]),
N([0,6],[2,2]), N([6,0],[2,2])
Sizesl 4 200,100,100,100 2 N([0,0],[2,2]), N([10,10],[2,2]),
N([0,10],[2,2]), N([10,0],[2,2])
Sizes3 4 335,55,55,55 2 N([0,0],[2,2)), N([10,10], [2,2),
N([0,10],[2,2]), N([10,0],2,2])
Sizes5 4 386,38,38,38 2 N([0,0],[2,2)), N([10,10], [2,2),
N([0,10],[2,2]), N([10,0],2,2])
Longl 2 2x 250 2 N([-0.3,0.7],[0.01,0.01]), N([~0.7,0.7],[0.01,0.01))
Smile 4 4x125 2 N([0,0],[1,0.1]), N([0,1],]1,0.1)),

C(]-0.5,0.5],0.5,0..2),
C([-0.5,0.5],0.3,1.257..1.757)+U([0, 0], [0.1,0.1]




Table 2: Summary of the used real data sets from the UCI Machine Learning
Repository. D is the dimensionality, C' gives the number of clusters, and N;
gives the number of data elements for cluster 7.

Name C N N; D Type

Iris 3 150 3 x50 4  Continuous

Wine 3 178 59, 71, 48 13 Continuous

Zoo 7 101 41,20,5,13,4,8,10 16 Boolean

Wisconsin 2 699 458, 241 9  Integer

Yeast 10 1484 463, 429, 244, 163, 51 8  Continuous
44, 37, 30, 20, 5

Dermatology 6 366 112, 61, 72, 49, 52, 20 34 Integer

Digits 10 3498 363, 364, 364, 336, 364 16 Integer
335, 336, 364, 336, 336

2 Real data

Table 2 briefly describes the real data sets taken from the UCI Machine
Learning Repository. A variety of different benchmarks has been chosen in
order to account for different problem sizes and problem structures (such as
a differing number of clusters, clusters of varying sizes, high dimensionality
etc.).

3 Data Processing

Prior to clustering, the real data is normalised to mean 0 and standard
deviation 1 in each dimension.

The distance functions used are as follows: For the synthetic data sets
we use the Euclidean distance, which, for two D-dimensional data items %
and j, is defined as

D

deuclidean (Z', ]) = Z (Zk - .]k)2
k=0

The advantage of using the Euclidean distance is the straightforward inter-
pretation and visualisation of the data, which facilitates the derivation of



appropriate test sets and the analysis of the results.
For the real data benchmark set, we use a distance function based on
the Cosine measure of similarity. It is given as

o ik - dk
(k=0 ik i) k=0 Jk " Jk)
Hence, we compute the Cosine of the two data vectors, translate and scale

the resulting value to lie within the interval [0, 1], and finally convert this
similarity value to a dissimilarity value by subtracting it from 1.0.

dcosine(iyj) =10-0.5- (10 -+



