Virtual tissue engineering of the heart: work in progress

Arun V Holden Computational Biology, Institute for Membrane and Systems Biology, Leeds

arun@cbiol.leeds.ac.uk

Manchester: 11 November 2005

Modeling the beating heart

Computational electrophysiology

Virtual tissue engineering

Biophysically detailed models of protein dynamics of cell Histologically detailed tissue model Spatial mapping of protein expression **Detailed** anatomy Validation of computational implementation Visualisation of output : virtual reality Application to both scientific and practical problems

Biophysically based cellular models

System of equations describing Current flow through ion channels and exchangers in the cell membrane

Simulated action potential

Mechanisms of Ca uptake, storage and release within the cell

Virtual cell engineering: SAN

Zhang, Holden, Kodama, Honjo, Lei, Varghese, Boyett Am J Physiol Heart Circ (2000) 279 H 397-H421

Intracellular Ca dynamics

2005-2010 BBSRC eScience programme

0-,1-,2-D (3-D) virtual tissues

Atrium: AF remodelling, drugs acting on I_K Human: Nygren, Courtemanche.

Ventricles: re-entry,VF; pacemaking; ectopics; repolarisation arrhythmias; mutant channels; spatial (mostly transmural) changes in expression; patholgies (ischaemia, hypertrophy)

Luo-Rudy family PriebeBeuckleman normal pathological human OGPV,

Ten Tusscher human

0-D

Cell models: change parameters Numerical solutions AP waveform, APD restitution, dissect mechanisms

Bifurcation analysis

AF remodelling

Zhang Garratt Holden CVR 2005: mostly due to g_{K1} upregulation Connexin and ionic channel remodelling

Human atrial electrophysiology

- Have cell, tissue models, (drug action) that can be incorporated into 3D atrial model
- Need high resolution normal/AF atrial geometries: postmortem DT-MRI. Access to clinical material and DTMRI.
- Need endocardial mapping of normal and atrial tachycardic activation

3D reconstruction from rabbit atrium MRI datasets

Ectopic pacemaking in human ventricular model

Experimental results:

 Expression of a geneticengineered non-functional I_{K1} channels reduced I_{K1} current density and promote pacemaker activities in ventricular myocytes.

Miake *et al* (2002) Nature 419:132-133 Miake *et al* (2003) J. Clin. Invest 111:1529-1536

Modelling:

• These results can be reproduced by reducing I_{K1} : fractional $g_{K1} = 1$ (dash line) and fractional $g_{K1} = 0$ (solid line)

 Characterise how the pacemaker activity emerges, i.e., the location and nature of the bifurcation point, with two approaches: (1) numerical experiments and (2) XPPAUT

Ectopic pacemaking in human ventricular model

- Human ventricular model (ten Tusscher et al 2004)
- Fractional g_{K1} as the bifurcation parameter

Qualitative similar behaviour is found in LRd00, with the bifurcation point \approx 0.3. (Benson *et al* (2005) J. Physiol. (Proceedings) *In press*)

Ectopic pacemaking in human ventricular model Bursting

- Caused by slow variables dynamics
- Occur within a narrow parameter range (Fractional g_{K1}): 0.05-0.077
- Extremely pathological

fractional $g_{K1} = 0.07$

Tissue models

Generic equation for an excitable medium Membrane voltage at a point depends on local voltage gradient and membrane current Assumes myocardium is a continuum Can take account of anisotropic conduction Plug in kinetics for *I*_{ion} models

$$\frac{\partial V}{\partial t} = D \frac{\partial^2 V}{\partial x^2} - \frac{1}{C} I_{ion}$$

Probability of arrhythmogenesis: Noise induced early after-depolarisations

Clayton Holden Tong IJBC 2003

Initiation of arrhythmias: Noise-induced propagating activity

Bi-directional or antegrade (ectopic)

Clayton Holden Tong Int J Bifurc Chaos 13 (12)

Probability of ectopic or re-entrant source in 1-D virtual tissue

Clayton Holden Tong 2003 i

Transmural 1D and pseudo ventricular ECG

Space-time plots and pseudoelectrograms. Stimulation applied in subendocardial region is either high- (BCL = 200 ms) or low-rate (BCL = 400 ms). (a) Normal tissue, high-rate; (b) subendocardial ischaemia, highrate; (c) global ischaemia, highrate; (d) normal tissue, low-rate; (e) subendocardial ischaemia, low-rate; (f) global ischaemia, low-rate.

J theor Biol in press

Predict QT 1,2 to identify spatial characteristics predict QT interval and T wave changes induced by modified I_{Kr}

Transmural heterogeneity

Transmural APD dispersion and vulnerability in 1D LRd virtual ventricular tissues: (a) normal tissue, (b) with amiodarone, (c) with d-sotalol. Spatial distributions of APD (solid lines) and VWs (grey areas).

DT MRImaging of canine ventricle

VF in Auckland and DTI canine geometries

Fibrillatory conduction with domains

Frequency analysis of spatial activity reveals domains fibrillating at different frequencies

Could the domains be driven by a single re-entrant source?

VF mechanisms in individual DTMRI hearts: canine, hypertrophic canine, human.

Need library of normal, pathological human DTMRI data sets

Grid-enabled visualisation: n concurrent 2 d simulations.

