Basic idea:
Let \(p(n) \) be a statement about the natural number \(n \).
Suppose we can show:
(i) \(p(1) \) is true (this is called the base case),
(ii) for each natural number \(k \), if \(p(k) \) is true, then \(p(k + 1) \) is true (this is called the inductive step).
Then \(p(n) \) is true for all natural numbers \(n \).

Theorem

Let \(n \) be a natural number. Then
\[
1 + 2 + \cdots + n = \frac{n(n+1)}{2}.
\]

Proof.

On board
Before proceeding, we need a couple of basic facts:

Lemma

(i) Let a, b and c be integers and suppose $c > 0$. Then $a \leq b \Rightarrow ac \leq bc$.

(ii) Let a, b and n be natural numbers. Then $a \leq b \Rightarrow a^n \leq b^n$.

Proposition

Let n be a natural number. Then $n! \leq n^n$.

Proof.

On board

Class exercise

On board
Theorem

Let n be a natural number. Then $1^2 + 2^2 + \cdots + n^2 = \frac{1}{6}n(n + 1)(2n + 1)$.

Proof.

On board

Proposition

Let $x \in \mathbb{R}$ with $x > -1$ and $n \in \mathbb{N}$. Then $(1 + x)^n \geq 1 + nx$.

Proof.

On board