Proposition

$\sqrt{2}$ is not a rational number.

Proof.

On board
Section 2 : Proof by contradiction (continued)

Proposition

Every natural number greater than one has a prime divisor.

Proof.

On board

This method of proof is often called proof by minimal counterexample. The proposition above allows us to prove a much more impressive theorem, due to Euclid:

Theorem (Euclid)

There are infinitely many prime numbers.

Proof.

On board
Proof by contrapositive
Suppose want to prove \(p \implies q \).
Saw this is equivalent to \((\neg q) \implies (\neg p)\).
So to prove \(p \implies q \) it suffices to assume \(\neg q \) and deduce \(\neg p \).

To illustrate proof by contrapositive, we apply it to a (trivial) result which it would be hard to prove otherwise:

Proposition

Let \(a \) and \(b \) be integers. If \(a + b \geq 9 \), then \(a \geq 5 \) or \(b \geq 5 \).

Proof.

On board