Integers modulo a prime under multiplication

Let \(p \) be a prime.

Define \(\mathbb{Z}_p^* = \mathbb{Z}_p \setminus \{0\} = \{1, 2, \ldots, p - 1\} \).

Consider \(\circ \), multiplication modulo \(p \).

The identity element is 1.

\(\circ \) is associative since multiplication is associative.

\(\circ \) is commutative since multiplication is commutative.

Let \(a \in \mathbb{Z}_p^* \). Then \(\gcd(a, p) = 1 \).

So there is \(b \in \mathbb{Z} \) such that \(ab \equiv 1 \mod p \) (and \(ba \equiv 1 \mod p \)).

Now \(b \equiv r \mod p \) for some \(r \in \mathbb{Z}_p^* \) and \(ar \equiv ra \equiv 1 \).

Hence \(a \) has inverse \(r \), i.e., \(a^{-1} = r \).

Hence \((\mathbb{Z}_p^*, \circ) \) is a commutative group.

Example: \((\mathbb{Z}_5^*, \circ) \). *On board*
The symmetric group

Fix \(n \in \mathbb{N} \). Write \(\mathbb{N}_n = \{1, \ldots, n\} \).

Write \(S_n \) for the set of permutations \(f : \mathbb{N}_n \rightarrow \mathbb{N}_n \).

Recall from Section 6 that we have \(|S_n| = n! \).

Consider the binary operation \(\circ \) given by composition of permutations.

The identity map \(i_{\mathbb{N}_n} : \mathbb{N}_n \rightarrow \mathbb{N}_n \) is the identity element. Write \(e = i_{\mathbb{N}_n} \).

Composition of functions is associative, so the binary operation is associative.

We saw (Section 5) that every permutation has an inverse.

Hence \(S_n \) forms a group under \(\circ \). Called the \textit{symmetric group}.

When \(f, g \in S_n \), we often write \(fg \) instead of \(f \circ g \).
More on inverses in groups

Let \((G, \ast)\) be a group. Let \(g, h \in G\).

What is \((g \ast h)^{-1}\)?

\[
(g \ast h) \ast (h^{-1} \ast g^{-1}) = g \ast (h \ast h^{-1}) \ast g^{-1} = g \ast e \ast g^{-1} = g \ast g^{-1} = e
\]

and

\[
(h^{-1} \ast g^{-1}) \ast (g \ast h) = h^{-1} \ast (g^{-1} \ast g) \ast h = h^{-1} \ast e \ast h = h^{-1} \ast h = e,
\]

so \(h^{-1} \ast g^{-1} = (g \ast h)^{-1}\).

By induction, if \(g_1, g_2, \ldots, g_n \in G\), then

\[
(g_1 \ast g_2 \ast \ldots \ast g_n)^{-1} = g_n^{-1} \ast \ldots \ast g_1^{-1}.
\]

Example:

Let \((G, \ast) = (S_6, \circ)\).

We have \(((1234)(2346))^{-1} = (12463)^{-1} = (13642)\) and

\[
(2346)^{-1}(1234)^{-1} = (2643)(1432) = (13642).
\]
Another example

Let $G = \{e, (12)(34), (13)(24), (14)(23)\} \subseteq S_4$, with composition as the binary operation.

$((12)(34))^{-1} = (12)(34), ((13)(24))^{-1} = (13)(24)$ and $((14)(23))^{-1} = (14)(23)$.

Write $a = (12)(34), b = (13)(24)$ and $c = (14)(23)$. Then the multiplication table is

<table>
<thead>
<tr>
<th></th>
<th>e</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>e</td>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>e</td>
<td>c</td>
<td>b</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>c</td>
<td>e</td>
<td>a</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>b</td>
<td>a</td>
<td>e</td>
</tr>
</tbody>
</table>

Hence \circ is a binary operation, and G forms a group.

Note that G is commutative.
We are interested in sets with two compatible binary operations.

Definition

Let F be a non-empty set and let $+, \ast$ be binary operations on F (they need not be addition and multiplication).

We say $(F, +, \ast)$ is a *field* if the following are satisfied:

1. **(F1)** $(F, +)$ is a commutative group. Write 0 for the identity.
2. **(F2)** $(F \setminus \{0\}, \ast)$ is a commutative group. Write 1 for the identity.
3. **(F3)** $\forall a, b, c \in F$, $a \ast (b + c) = (a \ast b) + (a \ast c)$. ($\ast$ is *distributive* over $+$).

F will have an identity element with respect to $+$ (the additive identity) and an identity element with respect to \ast (the multiplicative identity).

Each $a \in F$ has an inverse with respect to $+$, written $-a$.

Each $a \in F \setminus \{0\}$ has an inverse with respect to \ast, written a^{-1}.

\mathbb{R}, \mathbb{C} and \mathbb{Q} are fields when $+$ is addition and \ast is multiplication.
Some finite fields

Let $p \in \mathbb{N}$ be a prime. Let $F = \mathbb{Z}_p$.

Write $\mathbb{Z}_p^* = \mathbb{Z}_p \setminus \{0\}$.

Consider \oplus and \odot as the binary operations on F.

(\mathbb{Z}_p, \oplus) forms a commutative group (with identity element 0). So (F1) is satisfied.

(\mathbb{Z}_p^*, \odot) is a commutative group (with identity element 1). So (F2) is satisfied.

$\forall a, b, c \in \mathbb{Z}_p, a \odot (b \oplus c) = (a \odot b) \oplus (a \odot c)$.

Hence (F, \oplus, \odot) is a field. Note that F is finite.

\mathbb{Q} and \mathbb{Z}_p are the fundamental examples of fields - in a sense every field ‘contains’ a copy of one of these.