Towards the inclusion-exclusion principle

Theorem

Let X and Y be finite sets such that $X \cap Y = \emptyset$ (we say that X and Y are disjoint).
Then $|X \cup Y| = |X| + |Y|$.

Corollary

Suppose that X_1, \ldots, X_n are pairwise disjoint finite sets.
Then $X_1 \cup \cdots \cup X_n = \bigcup_{i=1}^{n} X_i$ is a finite set and

$$|\bigcup_{i=1}^{n} X_i| = \sum_{i=1}^{n} |X_i|.$$
Theorem (Inclusion-exclusion principle)

Let X and Y be finite sets. Then

$$|X \cup Y| = |X| + |Y| - |X \cap Y|.$$

Proof.

$X \cup Y = (X \setminus Y) \cup (Y \setminus X) \cup (X \cap Y)$, a union of pairwise disjoint sets.

By Corollary

$$|X \cup Y| = |X \setminus Y| + |Y \setminus X| + |X \cap Y|.$$

$X = (X \setminus Y) \cup (X \cap Y)$, so by Theorem

$$|X| = |X \setminus Y| + |X \cap Y|.$$

Similarly $|Y| = |Y \setminus X| + |X \cap Y|$. Substituting,

$$|X \cup Y| = (|X| - |X \cap Y|) + (|Y| - |X \cap Y|) + |X \cap Y| = |X| + |Y| - |X \cap Y|.$$
Theorem

Let \(X \) and \(Y \) be finite sets, with \(|X| = m \) and \(|Y| = n \). Then \(X \times Y \) is a finite set and

\[|X \times Y| = mn. \]

Proof.

Suppose first \(X = \emptyset \) or \(Y = \emptyset \). Then \(X \times Y = \emptyset \), so \(|X \times Y| = 0 \).

Suppose now \(X \neq \emptyset \) and \(Y \neq \emptyset \).

Write \(X = \{x_1, \ldots, x_m\} \). Then

\[X \times Y = \bigcup_{i=1}^{m} (\{x_i\} \times Y). \]

Now \(\forall \ i, \ |\{x_i\} \times Y| = |Y| \) (an easy exercise).

\(\{x_i\} \times Y \) are pairwise disjoint, so the result follows.
Corollary

Let X_1, \ldots, X_m be finite sets, where $|X_i| = n_i$ for each i. Then

$$|X_1 \times \cdots \times X_m| = n_1 n_2 \cdots n_m.$$

Proof.

Use previous Theorem and induction on m.

Dr. Charles Eaton
Lecture 15
October 24th, 2014 5 / 7
We can now use these results to count functions.

Corollary

Let X and Y be non-empty finite sets, where $|X| = m$ and $|Y| = n$. Then the number of functions $X \rightarrow Y$ is n^m.

Proof.

Write $X = \{x_1, \ldots, x_m\}$.

A function $f : X \rightarrow Y$ determines an element

$$(f(x_1), f(x_2), \ldots, f(x_m)) \in Y^m = Y \times \cdots \times Y.$$

Conversely, each $(y_1, \ldots, y_m) \in Y^m$ determines a function $f : X \rightarrow Y$ by $\forall \ i, f(x_i) = y_i$.

So (given our labelling x_1, \ldots, x_m) we have constructed a bijection

$$g : \{f : X \rightarrow Y \text{ is a function}\} \rightarrow Y^m.$$
Notation: For \(n \in \mathbb{N} \), define \(n! = n(n - 1) \ldots 2 \cdot 1 \). Define \(0! = 1 \)

Theorem

Let \(A \) and \(B \) be finite sets with \(|A| = |B| = n \). Then there are precisely \(n! \) bijections \(A \to B \).

In particular, there are precisely \(n! \) permutations of \(A \).

Proof.

Induction on \(n \). The result is clear for \(n = 1 \). Suppose that the result is true for \(n = k \).

Suppose \(|A| = |B| = k + 1 \). Fix \(a \in A \).

For each \(b \in B \), count bijections \(f : A \to B \) for which \(f(a) = b \).

By assumption, there are \(k! \) bijections \(A \setminus \{a\} \to B \setminus \{b\} \).

So there are \(k! \) bijections \(f : A \to B \) satisfying \(f(a) = b \).

There are \(k + 1 \) choices for \(b \), so the total number of bijections is \((k + 1)k! = (k + 1)! \).

So by induction the result is true for all \(n \).