9 - RELATIONS

9.1 Determine whether the following relations on \(\mathbb{R} \) are (a) reflexive; (b) symmetric; (c) transitive.

(i) \(xRy \iff x \leq y + 1 \)
(ii) \(xRy \iff xy \geq 0 \)
(iii) \(xRy \iff xy > 1 \)
(iv) \(xRy \iff |x - y| \leq 1 \).

9.2 Determine which of the following relations \(R \) on the given set \(A \) are equivalence relations.

(i) \(A = \mathbb{Z} \times (\mathbb{Z} \setminus \{0\}) \); \((a, b)R(c, d) \iff ad = bc \).
(ii) \(A = \mathbb{Z} \); \(aRb \iff a - b \) is odd.
(iii) \(A = \mathbb{N} \); \(aRb \iff \frac{a}{b} \) is a prime number or \(\frac{a}{b} = 1 \).
(iv) \(A = \mathbb{Q} \); \(aRb \iff a - b \in \mathbb{Z} \).

9.3 Let \(f : A \to B \) be a function. Define a relation \(R \) on \(A \) by

\[a_1Ra_2 \iff f(a_1) = f(a_2), \]

where \(a_1, a_2 \in A \).

Prove that \(R \) is an equivalence relation on \(A \).

Find the equivalence classes of \(R \) for the following functions and verify that they partition \(A \).

(i) \(A = \{1, 2, 3, 4, 5\} \), \(B = \{6, 7, 8\} \) and \(f(1) = 6 \), \(f(2) = 7 \), \(f(3) = 8 \), \(f(4) = 7 \), \(f(5) = 8 \).

(ii) \(A = B = \mathbb{Z} \); \(f(x) = (x - 1)^2 \).

(iii) \(A = \mathbb{C}, B = \mathbb{R} \); \(f(z) \) is the imaginary part of \(z \).