6 - CARDINALITY OF SETS

6.1 Let $A = \{a, b, c, d\}$ and $B = \{e, f\}$. What is the cardinality of the Cartesian product $A \times B$? Write down an explicit bijection $\mathbb{N}_n \to A \times B$ where $n = |A \times B|$.

6.2 Suppose that A, B and C are finite sets. Prove that

$$|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|.$$

[Hint: Apply a result from lectures to $A \cup B \cup C = (A \cup B) \cup C$, and then apply it again.]

6.3 In a class of 30 students, everyone supports at least one of three teams: 16 support X, 17 support Y and 14 support Z; also 8 support both teams X and Y, 7 support both X and Z, and 9 support both Y and Z. How many support all three teams?

6.4 Suppose A is a set with $|A| = n$. How many functions are there form A to A which are not bijections?

6.5 Let A and B be finite sets. What is the number of 1-1 functions $A \to B$?

6.6 Suppose n and r are natural numbers with $n \geq r$. Prove that

$$\binom{n}{r} = \binom{n-1}{r-1} + \binom{n-1}{r}.$$

[Hint: Let A be a set with $|A| = n$. Then $\binom{n}{r}$ is the number of subsets of A of cardinality r. Choose $a \in A$ and write $B = A \setminus \{a\}$. Count the subsets of A of cardinality r which are contained in B, and those which are not contained in B.]

6.7 (i) Calculate

(a) $\binom{5}{0} + \binom{5}{1} + \binom{5}{2} + \binom{5}{3} + \binom{5}{4} + \binom{5}{5}$ and

(b) $\binom{5}{0} - \binom{5}{1} + \binom{5}{2} - \binom{5}{3} + \binom{5}{4} - \binom{5}{5}$.

(ii) Expand $(1+x)^n$ using the binomial theorem. Hence (by making cunning choices for x) show that

(a) $\sum_{r=0}^{n} \binom{n}{r} = 2^n$ and

(b) $\sum_{r=0}^{n} (-1)^r \binom{n}{r} = 0$.

1