3 - PROOF BY INDUCTION - EXERCISES

3.1 (5.1 of [IMR]) Prove by induction that for all natural numbers $n, n^3 - n$ is divisible by 3.

3.2 (5.2 of [IMR]) Prove by induction that $n^3 \leq 2^n$ for all integers n with $n \geq 10$.

3.3 Prove by induction on n that 13 divides $2^{4n+2} + 3^{n+2}$ for all natural numbers n.

3.4 Prove by induction on n that $n! > 2^n$ for all natural numbers n such that $n \ge 4$.

3.5 Prove by induction on n that for all natural numbers n

$$\sum_{j=1}^{n} j^3 = \frac{1}{4}n^2(n+1)^2.$$

3.6 Let (u_n) be the sequence of numbers defined by

 $u_1 = 1$ $u_2 = 1$, $u_{k+1} = u_{k-1} + u_k$ for $k \ge 2$

(These are the Fibonacci numbers). Prove by induction on n that

$$u_n^2 = u_{n-1}u_{n+1} + (-1)^{n-1}$$

for all natural numbers n such that $n \geq 2$.

3.7 By experimenting or otherwise, conjecture an expression for the sum of the first n odd numbers and prove that it works.