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ABSTRACT

Control loop monitoring has become an important research field over the past decade. Research has pri-
marily targeted single-input single-output (SISO) feedback control systems with limited progress being
made on the monitoring of multi-input multi-output (MIMO) control systems and large scale model pre-
dictive control (MPC) systems in particular. The size and complexity of MPC systems means that identi-
fying and diagnosing problems with their operation can be challenging. This paper presents an MPC
condition monitoring tool based on multivariate statistical process control (MSPC) techniques. The pro-
posed tool uses intuitive charts to enable casual users of MPC technology to detect abnormal controller
operation and to identify possible causes for this behaviour. Through its application to data collected
from a large scale MPC system, the proposed technique is shown to be able to identify and diagnose poor
control performance resulting from various issues including inappropriate interaction by process

Principal component analysis (PCA)
Partial least squares (PLS)
Recursive PCA and PLS

Condensate fractionation

operators.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Over the past decade the oil, gas, and chemical manufacturing
industries have invested heavily in the implementation of ad-
vanced process control (APC) applications, of which the most pop-
ular form is model predictive control (MPC). MPC bridges process
modelling, control and optimisation to enhance the profitability
and stability of process operations. Sustaining the performance of
the installed MPC system is usually dependent on various factors
that affect their performance. As highlighted in AlGhazzawi et al.
[3], the factors found to be most contributing to the poor perfor-
mance of MPC applications from a practical point of view are:

Lack of properly trained operators and support personnel.
Lack of MPC condition monitoring applications.
Significant process modifications and enhancements.
Poor controller tuning and inaccurate models.

Unresolved basic (regulatory and PID) control problems.

To address the above issues, academic researchers, practitio-
ners, and control technology providers have developed a keen
interest in monitoring the performance of control applications in
general, and the condition monitoring of MPC applications in par-
ticular. This effort has resulted in a plethora of publications as well
as several commercial tools aimed at monitoring the condition of
control system applications.
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Interest in control loop monitoring can be traced back to the
work of Harris [10] who explained how the performance of a sin-
gle-loop control system could be compared with what would be
achieved if a minimum variance (minvar) controller were applied.
It is rarely sensible to implement a minvar controller on an indus-
trial system, however, their anticipated performance does provide
a lower bound for the variance of the controlled variable. Harris
[10] proposed a statistic, now referred to as the Harris index, which
is defined as the ratio of the variance achievable using minvar con-
trol to the variance measured under the current control law. As the
value of this statistic reduces then so too does the measured per-
formance of the control system. The key advantage of the Harris
approach to control loop monitoring is that only routine operating
data is required to determine the performance of the control sys-
tem. This fact has made the approach very attractive to industry
and it is now applied as a matter of routine by many companies.

The Harris technique has been investigated and expanded in
many studies over the last few years. Desborough and Harris [6],
for example, extended the technique to make it suitable for MISO
systems. Harris et al. [11] later adapted this work and developed
an approach for MIMO systems. Further modifications to the ap-
proach have been proposed by Tyler and Morari [33], who accom-
modated the presence of non-minimum phase zeros and unstable
poles in the performance criteria, and Kozub and Garcia [20], who
suggested that the controller performance should be compared
with the desired first order response of the closed loop system.
Arguing that minvar performance is not a realistic goal for an
industrial control system, many researchers have proposed alter-
native performance indices. Ko and Edgar [16], for example,
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adopted a strategy that used a PID controller as the benchmark
control performance, whilst Horch and Isaksson [12] proposed a
performance index that recognised that it may be desirable for at
least one closed loop pole to be located away from the origin.

An overview of recent developments in control performance
monitoring for MIMO applications was covered in Qin and Yu
[30], where a number of control performance benchmarks other
than the popular minimum variance were presented. Due to the
nature of some MIMO systems with respect to strong interactions
between variables, this work recommended diagnosing control
performance relative to a benchmark, and suggested using multi-
variate statistics to help yield meaningful diagnosis. A case study
on an industrial boiler was presented in this paper.

A comprehensive review of the current status of control perfor-
mance monitoring is presented in Jelali [15]. This paper provides a
thorough review of control performance monitoring literature over
the past decade as well as a review of the commercially available
tools and technologies for control performance monitoring. A set
of comprehensive recommendations were also made, based on
the current tools and an outline of the future needs in control loop
monitoring was presented. In addition, a proposed methodology
that combines several assessment benchmarks and methods was
proposed. A further review of control monitoring techniques can
be found in Huang and Shah [13].

More pertinent to MPC applications, Ko and Edgar [17,18]
developed a monitoring scheme that compared the performance
of an MPC system to that achievable using constrained minimum
variance control. Patwardhan et al. [28] proposed a performance
index which compared the cost function of the controller at any gi-
ven time with the cost function from a period of time when the
controller was assumed to be operating well. The fundamental
problem with the vast majority of techniques applied to monitor
the performance of control loops is that they rely on a measure
of the errors between the controlled variables and set-points. How-
ever, the majority of industrial MPC systems tend to operate to soft
constraint limits for controlled variables rather than set-points and
hence there will not be an explicit error measurement for each
controlled variable. This means that the techniques that have been
proposed for MPC systems are unlikely to be suitable for industrial
application.

Moreover, practical aspects of performance assessment of MPC
was presented in the work of Agarwal et al. [1] where the relation-
ship among process variability, constraints, and probabilistic eco-
nomic performance of MPC was investigated. This proposed
approach considered the uncertainties induced by the process var-
iability and evaluated the economic performance through probabi-
listic calculations. Further development of this approach was
presented in Agarwal et al. [2], where Bayesian inference was used
for decision making in order to tune the constraints to achieve
optimal economic MPC performance.

In the work of Xu et al. [36], it was shown that variance based
performance assessment could be transferred to assessment of
MPC performance. The MPC economic performance is evaluated
by solving benefit potentials through either variability reduction
of output variables or tuning constraints. Algorithms for MPC per-
formance assessment and tuning guidelines for constraints and
variance were developed in this paper using linear matrix inequal-
ities and process data and steady-state gains.

An innovative technique for monitoring MPC performance has
been proposed in the work of Loquasto III and Seborg [23]. Princi-
pal component analysis (PCA) and distance similarity factors were
used to monitor MPC performance, where several PCA pattern clas-
sifiers were developed to monitor the control system, and to iden-
tify abnormal behaviour. This technique was used to monitor the
performance of an MPC controlled Wood-Berry distillation column
model. Another approach to monitor MPC performance was pre-

sented in Loquasto Il and Seborg [24]; as in Loquasto Il and Seborg
[23], current MPC operation is compared to a simulated database of
closed-loop MPC operation. However, in this work, neural network
classifiers were used to determine whether or not the controller
was exhibiting abnormal performance. The performance of the
neural-network based classifiers in monitoring an MPC-controlled
Wood-Berry distillation column model were examined for various
scenarios including the detection of abnormal operation, model-
plant mismatch, and abnormal disturbances.

As a result of the industry requirements for MPC monitoring
tools, several leading process automation technology providers
have developed tools to help monitor the condition of MPC appli-
cations. These systems address the needs of users to ensure that
these controllers are functioning properly to ensure tangible bene-
fits are realized from their operation. Examples of commercially
available MPC monitoring tools are presented in Table 1.

The above mentioned tools provide MPC support staff with
comprehensive information on controllers’ performance, effective-
ness, model accuracy, as well as a range of performance bench-
marks for both the MPC controller and the regulatory or PID
control layer. Such tools have contributed greatly over the past
few years in ensuring that installed controllers are functioning
properly for prolonged periods.

Although these tools provide great insight into the condition of
control systems they are primarily aimed at expert users of MPC
technology. Such users are typically senior process or control engi-
neers with considerable experience in MPC applications. The infor-
mation generated from the available monitoring tools focuses on
control benchmarks, MPC specific parameters or even frequency
domain analysis. Thus despite the benefits obtained from recent
monitoring tools, there remains a need for a monitoring tool that
would help the front-line users such as control room operators
and junior engineers in understanding the MPC application condi-
tion without being required to have a thorough understanding of
the theory, benchmarks or parameters of MPC technology. Conse-
quently, the specific focus of the work described in this paper
was to develop an MPC condition monitoring tool that serves the
need for control room operators and casual users of MPC applica-
tions. The desired tool should provide users with information be-
yond the basic service factor, also referred to as up-time, or the
primitive on/off indicator. Furthermore, it should draw the user’s
attention to abnormal behaviour in the controller performance,
or possibly any process abnormality. It is worth noting that this
tool does not replace the MPC monitoring tools mentioned earlier
but rather complements such tools, since MPC technical support
staff need the information provided by such tools for in-depth
analysis and troubleshooting of controller performance.

In this paper, the ability of multivariate statistical process con-
trol (MSPC) techniques to monitor industrial MPC systems is inves-
tigated. Intuitive MSPC charts are used to assist plant operators
and process engineers in monitoring the controller performance
and help detect abnormal behaviour. The proposed technique com-
pares current controller performance with that obtained from an

Table 1

Commercial MPC monitoring tools

Company Tool Supported MPC Website

technology

Honeywell APC Scout®  RMPCT® www.hps.honeywell.com

Aspen Tech Aspen DMCplus® www.aspentech.com
Watch®

Matrikon Process RMPCT® DMCplus® www.matrikon.com
Doctor®

Shell - MDpro® SMOC® www.yokogawa.com

Yokogawa
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MSPC model derived from a data set representing optimum con-
troller performance. This work compares the performance of the
two most frequently used MSPC techniques, Principal Component
Analysis (PCA) and Partial Least Squares (PLS) in monitoring MPC
performance. Recursive techniques are also applied in designing
the proposed monitoring tools so that it is able to track the time-
varying nature of the process. The results presented in this paper
provide an indication of the benefits provided by the proposed tool
and the types of control system abnormality that the system is able
to detect. Furthermore, many of the practical considerations in-
volved when developing a multivariate statistical monitoring solu-
tion for application to an industrial MPC system are addressed. For
example, which variables should be included in the analysis and
how can time-varying and non-stationary dynamics be catered
for in the model?

Although MSPC techniques have been used routinely for the
detection of faults and abnormal conditions in industrial studies
[25,19], the use of PCA/PLS methods to monitor the condition of
an industrial MPC system based on data collected from an indus-
trial process is considered novel.

2. Multivariate statistical process control (MSPC)

MSPC refers to a collection of algorithms that can be used to ex-
tract information from large multivariable data sets. Although the
algorithms differ considerably, they share the similarity that they
typically identify several artificial variables, as linear or nonlinear
combinations of the original variables. The benefit that MSPC tech-
niques offer is that in situations where there is a large amount of
correlation between the original variables, such as with industrial
process data, they can describe most of the information in the data
set using a reduced number of artificial variables, which can make
analysis of the data set, and process, simpler.

There have been many studies completed over the last few
years which have highlighted how MSPC techniques can success-
fully be used to detect process faults and abnormalities (Kourti,
2005) [19], classify materials and products [26] and more recently
be used to regulate complex processes [5]. These studies have
tended to focus on two specific MSPC techniques, principal compo-
nent analysis (PCA) and partial least squares (PLS). These two algo-
rithms are described briefly in the following Sections 2.1 and 2.2.
For further details regarding these algorithms, the reader is re-
ferred to Jackson [14] for PCA and Geladi and Kowalski [7] for PLS.

2.1. Principal component analysis

PCA is an unsupervised data analysis technique. The approach
transforms a matrix containing m observations of n process vari-
ables, Z, into a matrix of independent artificial variables, or scores,
t, (where k=1 to n) of length m. The relationship between the
scores and the original matrix, Z is defined as follows:

np<n
Z=> tp,+E 1)

k=1
where the pyvectors, of length n, are known as the loadings. The
loadings are equal to the eigenvectors of the data covariance matrix,
Z"Z. The t; and py pairs are ordered so that the first pair captures the
largest amount of variation in the data and the last pair captures the
least. In situations where there exists significant co-linearity it is
generally found that a small number of principal components (np)
can account for much of the power, and hence information, in the
covariance matrix. The remaining power constitutes the error term
E. When Eq. (1) is applied to a single vector of new observations, z',
the resulting term e is called the prediction error. There are several
methods for determining a suitable value for np. In this work, the

approach suggested by Wise and Gallagher [34] was adopted. This
approach applies cross validation, with due consideration of the
variance explained by the scores, to select an appropriate value
for np.

Having identified the PCA model, two monitoring statistics are
used to identify abnormal conditions. These abnormal conditions
may be identified in the data that is used to develop the model
or new data that may be subsequently collected and analysed in
real-time. These two statistics, 7> and SPE, are defined as follows:

np

2 —24T

T = E tkak tk
k=1

where o2 is the variance of the kth t score.
2
SPE = |||

Provided any data presented to the PCA model is consistent with
the data used to identify the model, then the values of the T? and
SPE statistics should remain low, and below a statistical threshold
limit. Elevated values of these statistics provide an indication of
abnormal conditions. Goulding et al. [8] provide further information
regarding the use of these statistics to detect and isolate abnormal
conditions.

2.2. Partial least squares

PLS is a regression tool that can be applied whenever process
variables can be partitioned into cause (X) and effect (Y) values.
The method is commonly used in preference to alternative identi-
fication algorithms, such as multiple linear regression (MLR) when
developing data driven models. Its advantage over these alterna-
tive identification algorithms is that it is able to produce accurate
and robust models in situations where high levels of correlations
exist between the cause variables [7].

The PLS algorithm is similar to PCA and selects factors of cause
variables in a sequence which successively maximises the ex-
plained covariance between the cause and effect variables. Given
a matrix of cause data, X, and effect data, Y, a factor of the cause
data, t;, and effect data, uy, is evaluated, such that

np<nx np<nx
X=> tp,+E and Y= ) wgq;+F (2)
k=1 k=1

These equations are referred to as the outer relationships. The score
vectors t,, which are different to those obtained using PCA are
mutually orthogonal. These vectors and the u, vectors are selected
so as to maximise the covariance between each pair, (t;,uy). nx is the
number of cause variables that are contained within matrix X and E
and F are error matrices.

Linear regression is performed between the t, and the u,, to
produce the inner relationship, such that

u, = bktk + & (3)

where by is a regression coefficient, and ¢, refers to the prediction
error. The PLS method provides the potential for a regularised mod-
el through selecting an appropriate number of scores, or latent vari-
ables, u, in the model (np). Furthermore, it is often found that a
relatively small number of the low-index latent variables can ex-
plain the greater part of the variation in both the cause and effect
variables. Cross validation can be used to select the necessary num-
ber of latent variables.

As with PCA, several univariate statistics can be used to identify
when new data is inconsistent with the data that was used to iden-
tify the PLS model. In this paper three statistics associated with the
PLS algorithm have been used: T2 SPE, and SPE, which are defined
as follows:
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np
T’ =) to.’t
k=1
where 7 is the variance of the kth t-score.
SPE, = [[E;
2
SPEy = [Fl;

The key differences between PLS and PCA are that PLS considers the
explicit relationship between cause and effect variables, which is
particularly important when considering a multivariable control
system. The statistics identified for PLS relate specifically to either
the cause or effect variables, which can aid in the isolation of the
cause of any abnormality.

3. Methodology

The general approach proposed in this paper for monitoring an
industrial MPC system is based on designing a PCA or PLS model
that will be used in real-time to identify abnormalities with the
controller. The models are based on operating data from periods
where the controller was operating in what is believed to be an
optimal fashion. The methodology followed in developing the
MPC condition monitor in this study involved the following
steps:

1. Application design.
2. Data collection and analysis.
3. MPC monitor prototyping and testing.

Although this approach appears relatively straight forward, sev-
eral issues need to be considered when developing MSPC models
for practical industrial applications. These include the following:

The design objectives and criteria for the monitoring system.
Type of data used to develop the MSPC model.

Process and control variables used in the model.

MSPC technique best suited for the application.

How can the information provided by the MSPC model be inter-
preted and what type of information does the model provide?

The following sections describe in detail how the above steps
were followed in this study. The approach taken is believed to be
relatively generic for developing industrial MPC monitoring sys-
tems, and recommendations are presented to deal with the issues
associated with designing such an application for a specific indus-
trial process example, which is a condensate fractionation process.

4. The condensate fractionation process description

The process investigated in this study was a condensate frac-
tionation process. Fig. 1 shows a simplified process flow diagram
of the process. This process separates a hydrocarbon feed into a
mix of products for further processing or product blending. The
plant feedstock is a condensate mixture from non-associated gas
production that contains various mixtures of petroleum fractions
that are separated into various products using the difference in vol-
atility between the feed components by distillation. Process cold
feed is pumped through the preheating train to heat the feed up
to the required desalting temperature. The plant feed then enters
a desalter (not shown in Fig. 1) where salt is removed and the first
separation of light fractions occurs. The desalted feed is then fed to
a preflash drum where light products and any remaining free water
are removed. The preflash drum product is then heated by a set of
heat exchangers before entering a preflash distillation column. In
this column, feed is distilled into light, medium and heavy prod-
ucts, which are removed from the top, middle, and bottom sections
of the column, respectively. Heavy product from the bottom of the
preflash distillation column is further heated by two furnaces be-
fore entering the main fractionating distillation column. In the
main column, feed is distilled into multiple products based on
the difference in their boiling temperatures. The distilled products
are collected at the column’s top, middle, and lower sections and
are further processed to produce motor gasoline, kerosene, jet fuel
and diesel oils. A key objective of the process is tight control of the
main fractionator column product specifications (properties) such
as boiling points and flash points while maintaining maximum
production rates subject to equipment safety and physical
constraints.

This refining process is characterised by its relatively slow
dynamics (settling time is around 2 h), large number of process
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Fig. 1. Simplified flow diagram of the process.
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variables, and process interactions. Process interaction not only ex-
ists between composition (property) control loops but also be-
tween process variables as well. For example, manipulating the
process feed, furnace output temperature, or the main fractionator
column overhead temperature affects all products composition as
well as the production rate of several finished products. The com-
plexity of operating heat integrated distillation processes was
investigated in [21] and in [9] where modelling, simulation, and
controllability analysis of such processes were investigated.

An important control objective in this process is controlling the
composition (specification) of the six products of the process. A key
challenge in controlling this process is to ensure all key product
specifications are met in the presence of changing process condi-
tions, interaction between various sections of the plant due to heat
integration and disturbances, while monitoring a large number of
process variables to ensure that the plant is well within its safety
limits; in addition, operators have to also operate and monitor
the condition of the installed MPC. An installed model predictive
controller (MPC) system provides accurate control of critical prod-
uct specifications, minimises the impact of process disturbances,
and drives the process to operate closer to its economic optimum
point. Six inferential models (soft-sensors) are implemented in
the process to provide timely prediction of critical product specifi-
cations (composition) and to enable real-time control of these prod-
uct specifications. The controller has 30 controlled variables (CV),
17 manipulated variables (MV) and 6 measured disturbance vari-
ables (DV), and is considered reasonably large with respect to
industrial standards. The key MPC CV are the process feed flow, fur-
nace outlet temperature, and the specifications (composition) of
the main fractionator products: medium naphtha 90% boiling point,
heavy naphtha 90% boiling point, kerosene flash point, kerosene
90% boiling point, light diesel 90% boiling point, and heavy diesel
90% boiling point. Since on-line analysers are not available to mea-
sure these specifications, soft-sensors are used to predict these
product specifications at the top of the pre-fractionator distillation
column, as well as top and side draw of the main condensate frac-
tionator, these soft-sensors are among the controller CV. Other key
CV are product flow rates and valve position of key control valves.
Controller MV include feed flow setpoint, furnace outlet tempera-
tures, main fractionator overhead temperature, reflux flows in both
distillation columns, recycle flows of side products. Key MV that
influence critical CV are mainly the reflux flows and furnace outlet
temperatures. An embedded optimiser in the MPC is set to maxi-
mise valuable products flows while maintaining the product spec-
ifications. As described in Section 4 the measured DV in the
process include changes in feed quality, blending flows in between

Table 2
Model predictive controller key variables

Controlled variables (CV) Manipulated variables (MV) Disturbance variables

(DV)
Process feed flow Feed flow setpoint, Feed quality
Furnace outlet Furnace outlet temperatures, Blending flow between
temperature products
Medium naphtha 90% Main fractionator overhead Ambient temperature
boiling point temperature
Heavy naphtha 90% Reflux flows in both
boiling point distillation columns
Kerosene flash point Recycle flows of side
products
Kerosene 90% boiling
point
Light diesel 90% boiling
point

Product flow rates
Valve position of key
control valves

the main fractionator column products, and ambient temperature.
A summary of key MPC variables is presented in Table 2.

5. MPC monitoring tool

This section presents in detail the steps followed during the de-
sign of the MPC monitoring tool. The design methodology was
based on that presented by AlGhazzawi and Lennox [4] and Miletic
et al. [27], however specific guidelines pertinent to the develop-
ment of MPC monitors are given to assist in the development of
industrial MSPC-based MPC monitoring applications.

5.1. Application design

The main objective for this work was to develop a practical con-
dition monitoring tool able to provide timely information on the
performance and condition of an industrial MPC system. The devel-
oped tool was designed to be used by process operators and engi-
neers to detect and isolate any abnormality in the condition of an
installed MPC system so that appropriate action could then be ta-
ken. Users of this tool need not be expert users of MPC technology
since condition information and possible causes of abnormal oper-
ation is shown by intuitive charts.

The proposed MSPC monitor aims to address the following con-
tributing factors to abnormal MPC behaviour; firstly the lack of
properly trained operators and support personnel and secondly
the lack of MPC condition monitoring applications. Users of the pro-
posed tool should be able to easily detect and isolate abnormal con-
troller condition through basic MSPC charts, namely the Hotelling
(T?), square prediction error (SPE), and contribution charts. The con-
tribution charts will enable the user to identify the root cause of the
abnormal MPC behaviour so that appropriate action can be taken.
Operators and support personnel would only need to be trained
on using the proposed tool and to have a basic understanding of
MPC operation. With respect to the second factor, this serves as a
high level monitor of the MPC condition, and together with any of
the tools shown in Table 1 would form a hierarchical approach for
the condition monitoring of MPC systems, where operators can rely
on the proposed MSPC tool to detect abnormal behaviour in con-
troller performance, and attempt to resolve the abnormality. How-
ever if the problem persists due to a major problem with the
controller, then MPC support engineers can rely on the tools in Ta-
ble 1 to identify the root cause of the abnormal behaviour.

Finally, and most importantly, the tool must be robust to cope
with changing process behaviour and routine involvement and
intervention of MPC users in the form of temporarily turning off
certain CVs or changing setpoints or control limits of MV and CVs.

In summary, the aim of the proposed condition monitoring tool
was to

o Identify abnormal MPC conditions and inadequate controller
performance.

e Detect any violation of key MPC variables’ limits and identify
possible cause.

e Assist casual users and plant operators in monitoring the MPC
performance.

e Withstand routine changes in controller variables and limits.

e Detect occurrences of loss of controller degrees of freedom or
inappropriate CV/MV limits setting.

5.2. Data collection and analysis

Process data is of crucial importance when developing empirical
models, and hence data collection and analysis is a major contributor
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to the success of practical MSPC applications. During this step, pro-
cess data that represents optimal MPC operation must be collected.
The issues that are addressed during this stage are as follows:

1. What is considered optimum controller behaviour?

2. How much data is available?

3. What is the condition of the collected data, and is it suitable for
modelling purposes?

In this work, optimum controller performance was defined as
periods where:

a. The MPC controller is “ON”.

b. Critical CV and MV are active and within their specified tar-
gets (ranges or set points). By definition, critical CV/MVs are
required to be active at all times as per MPC design.

c. All key control valves are within the controllable range. In
this work this means valve opening more than 20% and less
than 90%.
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The data set chosen to represent optimum MPC performance
will provide the benchmark which controller condition at any gi-
ven point in time is compared with. This data set will be used to
develop the MSPC models to be used for the MPC condition
monitor.

Since control valves constitute the final control element in the
majority of process control loops, it is important to maintain them
within their controllable rage. When a controller is unable to meet
a required CV target due to a control valve being fully closed or
fully open, the control valves is said to be saturated. Valve satura-
tion affects that available degrees of freedom within an MPC sys-
tem and it is often recommended that operators relax some of
the control targets on certain less critical CVs to provide the con-
troller with more degrees of freedom. Valve saturation periods
are often overlooked when collecting process data for modelling
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or analysis purposes. In this work, periods where control valves
were saturated was not included in the modelling data set. Elimi-
nating this data will help the condition monitoring tool to identify
periods of valve saturation or loss of degrees of freedom. Another
consideration made when identifying optimum MPC performance
was to remove sections of collected data when one or more of
the controller CVs and MVs were inactive or outside of their upper
and lower targets.

MPC is a model-based control algorithm, where models of the
process are derived from process testing where key MVs are per-
turbed to generate step response trends for the CVs. For an MPC
system to function properly, it is imperative that controller models
are representative of the process, and plant-model mismatch is
minimal. To develop an effective MPC condition monitor, the pro-
cess operating point should not be significantly different from that
at the time when the MPC models were developed.

The process data used to develop the MSPC models in this study
were collected from an installed data historian. MSPC models were
developed from data collected from one year of operation, of which
approximately eight months of data represented optimum opera-
tion. An issue that often affects data analysis and data-driven mod-
elling techniques is the compression of data in plant historians.
Although it is advisable to use uncompressed data when develop-
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ing empirical models, it is not always possible to collect uncom-
pressed data for extended periods of time. For more details on
the effect of data compression and its effect on data driven meth-
ods, the reader is referred to Thornhill et al. [32]. The data used in
this work was found to be acceptable for modelling purposes as per
the guidelines set by Thornhill et al. [32]. As for data cleaning and
filtering, the Hampel filter proposed by Pearson [29] was used for
outlier detection and data cleaning. AlGhazzawi and Lennox [4]
and Miletic et al. [27] provide further information on data process-
ing for MSPC applications and the general approaches suggested in
these papers were followed in this study.

5.3. MPC monitor prototype and testing

Once the design objectives were set, and modelling data had
been collected and analysed, a prototype for the proposed MPC
monitor was developed using static PCA and PLS models to evalu-
ate their ability in tracking process conditions and identifying sig-
nificant abnormalities and excursions. Control limits for both the
SPE and T? charts are typically examined in this step so that appro-
priate levels can be specified to ensure that only significant abnor-
malities exceed these limits. To gain a better understanding of the
data, static PCA and PLS models were initially developed using the
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full processed dataset. Figs. 2 and 3 show the T? and SPE of the PCA
and PLS models, respectively. Both PCA and PLS models were
developed with six principal components (latent variables) that
helped explain 85% of the variability for PCA models, and for PLS
models explained 90% and 78% of the variability of the input and
output variables, respectively. The models used all MPC variables
including the inferential estimates (soft-sensors) that were in-
cluded in the controller. Tests were conducted to analyse the ef-
fects of removing any of these variables. By removing the
measured disturbances, the developed monitor was found to be
slightly more sensitive to issues relating to the control system it-
self, however, overall using all the variables was found to produce
the most robust and useful monitoring system. The sample time
was taken to be 60 min.

6. Results

This Section presents the results of the MPC condition monitor
using both PCA and PLS models. In this study, eight months of
operating data were used to develop the MSPC models and analyse
the controller performance. During this period, the MPC controller
was modified. In this modification several soft-sensors were up-
dated and a number of the controller models were improved. Data
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was collected after its revamp and these data were used to test the
ability of the condition monitoring tool to cope with such changes.

6.1. Static PCA/PLS models

The optimal operating data was used to develop static PCA and
PLS models using the algorithms and equations presented in Sec-
tion 2. Figs. 2 and 3 show the T? and SPE charts produced when this
data were passed through the identified PCA and PLS models,
respectively. Both models were tested for their ability to effectively
monitor the condition of the MPC system. Key areas of interest
were the ability of the developed MSPC models to detect abnor-
malities such as poor control performance and unmeasured
disturbances.

The charts shown in Figs. 2 and 3 display a number of violations
of the T? and SPE control limits, which were set at 90% and 95%
confidence levels. For example, the violation around sample point
690 is shown in detail in Fig. 4. This upset was clearly reflected
in both the PCA and PLS SPE charts. The contribution charts for this
time instant highlighted that a saturated control valve was respon-
sible for this abnormality. The raw measurement for the control
valve is shown in Fig. 4c which clearly shows that the valve was
saturated at the sample point analysed. The MSPC monitor was
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able to successfully identify the abnormality as well as isolate the
cause, and thus could have helped operators address the problem
upon its occurrence.

Another abnormality highlighted by the condition monitoring
application was at sample number 1000. As shown in Fig. 5, a clear
excursion of both the PCA and PLS output (effect) variable SPE
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occurs at this sample point. Contribution charts highlighted two
CVs responsible for this abnormal condition. Fig. 5c shows the
raw measurement of both these variables along with their lower
and upper targets. The MV that was used to control the flow of
both CVs, displayed in Fig. 5d, shows no abnormal movement at
sample number 1000, and hence this upset was likely the result
of an external disturbance upstream of the fractionation process
that affected the flow of both variables. A likely cause of this was
a drop in the supply line of these two flows. Early detection of this
abnormality can help operators to provide appropriate measures
through manual control or appropriate adjustments to MPC targets
to compensate for this disturbance. Another non-related abnor-
mality at approximately sample number 1000 was shown in the
input (cause) variables SPE chart, Fig. 6. Analysis of the raw data
of the contributing variable, which is shown in Fig. 6b, identifies
an unusual behaviour with this MV, where it abruptly changes be-
tween its higher and lower limits. Although this is not an abnormal
condition per say, it is not typical in this particular process to have
an MV switch suddenly from one production target to another.
Fig. 7 shows an interesting observation recorded by both PCA
and PLS charts between sample numbers 3300 and 3400. Examin-
ing the raw data for the CV contributing to this anomaly showed

poor control behaviour for this valve output as shown in Fig. 7c.
When the raw data and limits of the MV controlling this valve were
analysed, it was evident that the reason for this poor control
behaviour could be attributed to the pinched limits that the oper-
ators have set for the MV. Fig. 7d shows that the MV limits during
the upset period were reduced to 1 °C as opposed to the required
+3-4 °C range that is recommended and typically applied for this
variable.

The results above have shown that PCA and PLS offer great po-
tential for developing tools to monitor the behaviour of industrial
MPC controllers. The developed prototype using static MSPC mod-
els was able to identify MPC abnormalities caused by disturbances,
valve saturation and poor control performance due to the opera-
tors specifying inappropriate limits. In the following section the
benefits offered in using a recursive condition monitor are detailed.

6.2. Recursive PCA/PLS modelling

This section describes the development and testing of recursive
PCA/PLS models to the control monitoring system. It was antici-
pated that the recursive models would enable the monitoring tool
to track processes that are time-varying and non-stationary, such
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as the condensate process under test. Furthermore, the recursive
models performance was tested for its ability to handle changes
in controller configuration. In the data set used in this study, a per-
iod where several changes to the controller tuning parameters
were made as well as major changes in three soft-sensors, which
were defined as CVs in the MPC system. All three soft-sensors
are critical controller variables representing key product specifica-
tions. Several recursive MSPC algorithms have been proposed in
the literature in recent years to cater for the time varying nature
of many process systems [35,22]. In this paper a relatively simple
approach to recursive MSPC was applied, which identified a new
PCA model at each sampling instant using a moving window of
process data. For the recursive PLS modelling, the approach pro-
posed by Qin [31] was employed. Similar to the recursive PCA algo-
rithm, this method involved updating the PLS coefficients using a
moving window of data at each sampling instant. The window size
selected in this study was 3000, which represented around four
months of operating data. The selection was made based on con-
siderations of process modes of operation and is thought to be con-
sistent with the rate at which the feed stock and other disturbances
to the process occur.

Fig. 8 shows the T? and SPE charts for the recursive PCA and PLS
(RPCA/RPLS) models. Similar to the results from the static PCA/PLS
models, both RPCA and RPLS were able to identify the poor control
behaviour between samples 3300 and 3400 in Fig. 9. The abnor-
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mality was clearly shown in both RPCA and RPLS output variables
SPE charts, and the same contributing variable were highlighted by
both models. All major excursions identified in the static models
developed in the previous section were identified also by the recur-
sive technique. Two major abnormalities however in the recursive
models were highlighted that were not clearly visible in the static
models at approximately samples numbers 3900 and 4700; Fig. 10
shows the RPCA/RPLS T? and SPE charts around these two seg-
ments of the MPC operating data.

The process abnormality shown in Fig. 10 at approximately
sample number 3900 is attributed to the portion of data represent-
ing the period where the MPC controller was revamped by chang-
ing a number of tuning parameters as well as adjustment the
coefficients and models of three of the soft-sensors. The changes
in the soft-sensors are shown in Fig. 11, where it is shown that
for the first sensor, the magnitude of change is considerable since
the sensor was reconfigured to predict a different product property
from the one previously computed. The tuning parameter changes
primarily affects the controller dynamic performance and is unli-
kely to contribute to the steady state analysis shown here. The
charts shown in Fig. 10 shows that despite the changed made in
the controller configuration the recursive models have adapted
quickly to this new data.

An interesting observation from the recursive results was noted
at sample number 4690, where a clear abnormality was detected
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by the RPLS input variables SPE charts, as seen in Fig. 10b. The con-
tribution charts during this period revealed that the variables
shown in Fig. 12 are the primary contributors to the SPE limit vio-
lations. Although there is nothing peculiar about the raw data of
the process variable shown in Fig. 12a, other than it appearing to
be at the lowest operating point of the eight months periods, the
main contributor of the abnormality was in fact the variable dis-
played in Fig. 12b which is shown with its upper and lower control
limits. The identified variable was a controller MV that had been
restricted from moving by closing the upper and lower limits, thus
clamping the variable from moving freely to control its relevant
CV. It is shown in the figure that operators eventually took notice
and relaxed the limits on this variable. This result showed that in
this particular case, RPLS gave better information to isolate the
cause of the abnormality.

Finally, the abnormality at sample 4750, identified by both
RPCA and RPLS charts was investigated. The RPCA charts contribu-
tion plots identified the variable displayed in Fig. 13, which shows
one variable moving to a lower than normal operating point, while
the other variable is moving to a higher operating point. One of the
contributing variables was also identified by the RPLS contribution
charts as shown in Fig. 14.

The use of recursive MSPC models was studied in this section,
and showed potential for practical applications involving time-
varying processes, and presence of MPC design changes. Further-
more, results in this section showed an example where RPLS gave
more information on the cause of a process abnormality, while in
all other cases, both techniques gave comparable results.

7. Conclusion

This paper presented results from a comprehensive study on the
use of MSPC methods, namely PCA and PLS in developing MPC con-
dition monitoring applications for practical applications involving
industrial MPC systems. Results from both static and recursive
PCA/PLS techniques showed that MSPC methods offer great poten-
tial for developing effective MPC condition monitoring tools that
would help casual users monitor the performance of MPC systems
and take appropriate actions to resolve abnormalities when neces-
sary. The developed static and recursive techniques use intuitive
user friendly charts to help users quickly identify any process
anomaly and isolate probable causes. The developed tool comple-
ments current commercially available MPC condition tools that as-
sist expert MPC users and support engineers in diagnosing more
complex MPC abnormalities.

Results from this study showed that the developed prototypes
were able to identify abnormalities attributed to poor control per-
formance, process upsets and disturbances, as well as inappropri-
ate interference from process operators. Both PCA and PLS
models gave comparable results, however in at least one case,
PLS helped identify the root cause of an abnormal condition more
clearly. The use of recursive PCA/PLS models highlighted the bene-
fits that these techniques offer with their ability to withstand
time-varying processes and MPC changes; which will significantly
enhance the robustness of the condition monitoring tool in a prac-
tical application.

On a final note, although the developed tool helped identify
abnormalities and possible causes, it was evident that process
knowledge and experience is necessary to analyse MPC or process
abnormality.
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