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1 Introduction

Generalized Method of Moments (GMM) estimation provides a computation-
ally convenient way of estimating parameters of economic models. It can be
applied equally in linear or nonlinear models, in single equations or systems of
equations, and to models involving cross section, panel or time series data. This
convenience and generality has led to the application of GMM in many areas
of empirical economics, and the method is used frequently in macroeconomics.
In fact, the emergence of GMM can be argued to be one of the most important
developments in the econometric analysis of macroeconomic models over the
last 35 years.1

The method was first introduced in a seminal paper by Lars Hansen pub-
lished in Econometrica in 1982. While GMM had its origins in work on financial
economics,2 it was also soon recognized that the method offered a relatively
simple method for estimating the parameters of rational expectations models in
macroeconomics. Early applications involved models for: business cycles (Sin-
gleton, 1988), consumption (Miron, 1986), interest rates (Dunn and Singleton,
1986), inventory holding (Miron and Zeldes, 1988) and labour demand (Pindyck
and Rotemberg, 1983).3

Whatever the application, the cornerstone of GMM estimation is a quantity
known as the population moment condition:

Definition 1 Population Moment Condition

Let θ0 be a p×1 vector of unknown parameters which are to be estimated, vt be a

vector of random variables and f(.) a q×1 vector of functions then a population

moment condition takes the form

E[f(vt, θ0)] = 0 (1)

for all t.

In other words, a population moment is a statement that some function of the
data and parameters has expectation equal to zero when evaluated at the true
parameter value.

Estimation based on population moment conditions has a long tradition
in statistics going back at least to the Method of Moments (MM) principle

1For example, see Hansen and West (2002).
2See Ghysels and Hall (2002).
3For a list of other applications of GMM in macroeconomics and other areas, see Hall

(2005)[Table 1.1, pp. 3-4].
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introduced by Pearson in the late nineteenth century.4 The MM principle can
be applied in cases where q = p and involves estimating θ by θ̂T , the value
that solves the analagous sample moment condition, gT (θ̂T ) = 0, where gT (θ) =
T−1

∑T
t=1 f(vt, θ) and T is the sample size. However, in by far the majority of

cases in macroeconomics, the underlying model implies more moment conditions
than there are parameters to be estimated that is, q > p. In such cases, as
we show below, the MM principle does not work but Generalized Method of
Moments does.

The popularity of GMM can be understood by comparing the requirements
for the method to those for Maximum Likelihood (ML). While ML is the best
available estimator within the Classical statistics paradigm, its optimality stems
from its basis on the joint probability distribution of the data. However, in
many scenarios of interest in macroeconomics, this dependence on the proba-
bility distribution can become a weakness. The reason is that the underlying
theoretical model places restrictions on the distribution of the data but does
not completely specify its form with the result that ML is infeasible unless the
researcher imposes an arbitrary assumption about the distribution. The latter
is an unattractive strategy because if the assumed distribution is incorrect then
the optimality of ML is lost, and the resulting estimator may even be inconsis-
tent; e.g. in nonlinear Euler equation models, see Hansen and Singleton (1982).
It turns out that in many cases where the macroeconomic model does not spec-
ify the complete distribution, it does specify population moment conditions.
Therefore, in these settings, GMM can be prefered to ML because it offers a
way to estimate the parameters based solely on the information deduced from
the underlying macroeconomic model.

In this chapter, we provide an introduction to GMM estimation in macroe-
conomic models, focusing on the main aspects of its associated inference frame-
work and various practical matters that arise in its implementation. Since most
applications in macroeconomics involve time series, we concentrate on this case.
An outline of the chapter is as follows. In Section 2, we provide an illustration
of how population moment conditions arise in macroeconomic models. Section
3 defines the GMM estimator and discusses certain issues relating to its calcu-
lation. In Section 4, we summarize the large sample properties of the GMM
estimator and discuss the construction of the so-called two-step (or iterated)
GMM estimator. This section also presents various methods for inference about
the parameter. Section 5 contains a discussion of methods for assessing whether
the underlying model is correctly specified. In Section 6, we comment briefly
on the finite sample behaviour of the GMM estimator and examine reasons why
it may not be well approximated by the large sample theory in certain cases.
The latter leads to a discussion of a variant of GMM known as the Continu-
ous Updating GMM estimator. Section 7 discusses the behaviour of the GMM
estimator in the case of so-called weak identification, and Section 8 concludes

4See Pearson(1893,1894,1895) and Hall (2005)[Chap. 1.2] for summary of this and other

statistical antecedents of GMM.
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with a discussion of some recent developments involving estimation based on
moment inequalities.

In keeping with the tone of this volume, the discussion is aimed at practition-
ers. Readers interested in the statistical arguments are refered to the articles
cited below or Hall (2005) for a formal statement of the underlying regularity
conditions and proofs of the main statistical results.

2 Example: New Keynesian Model

To ilustrate the use of GMM in macroeconomics, we consider the problem of
estimating the parameters of a New Keynesian (NK) macroeconomic model. At
the heart of this model are an aggregate supply equation (or Phillips curve), an
aggregate demand equation (or IS curve), and a monetary policy rule (or Taylor
rule). There are a number of variants of this model and our discussion focuses
on the version presented in Bekaert, Cho, and Moreno (2010) (BCM hereafter).

In presenting the model, we adopt the following conventions and notations:
ṗt denotes inflation at time t, yt denotes detrended log output at time t, it
denotes the short term (nominal) interest rate at time t, yn

t is the natural rate of
detrended log output that would arise with perfectly flexible prices, e..,t denotes
an error term in which “..” is replaced by an acronym to denote the equation
in which it occurs, It denotes the information set at time t, Et[ · ] denotes
expectations conditional on It, and greek letters denote unknown parameters of
the model that need to be estimated.

The aggregate supply equation relates inflation today to expected future
inflation, past inflation and the output gap, yt − yn

t , as follows:5

ṗt = δ0Et[ṗt+1] + (1 − δ0)ṗt−1 + κ0(yt − yn
t ) + eAS,t. (2)

The aggregate demand equation relates output to expected future output, past
output and the real interest rate, it −Et[ṗt+1] that is:

yt = µ0Et[yt+1] + (1 − µ0)yt−1 − φ0(it − Et[ṗt+1]) + eAD,t. (3)

The monetary policy rule relates the interest rate to its past values, the expected
deviation of future inflation from its desired level, ṗ∗t , and the output gap via

it = ρ0it−1 + (1 − ρ0) {β0(Et[ṗt+1] − ṗ∗t ) + γ0(yt − yn
t )} + eMP,t (4)

Estimation of the parameters of this model raise a number of issues that can
be resolved in a variety of ways. Given that our purpose here is to illustrate the
use of GMM, we focus on the construction of the types of population moment
conditions that have been used as a basis for GMM estimation of part or all of

5For brevity, we omit the constant term from the aggregate supply and monetary policy

equations as these terms do not play a role in the subsequent discussion.
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this model. We consider two specific studies: Zhang, Osborn, and Kim (2008),
who estimate the parameters of the aggregate supply equation, and BCM who
estimate the the parameters of all three equations simultaneously. Taken to-
gether, these two examples illustrate the wide applicability of GMM as they
cover both linear and nonlinear models and parameters from both single equa-
tions and systems of equations.

Estimation of the Aggregate Supply equation
An immediate problem is that the right hand side of (2) involves the unobserv-
able variables Et[ṗt+1] and yn

t . To implement their GMM estimation, Zhang,
Osborn, and Kim (2008) replace these variables by proxy variables: for Et[ṗt+1],
they use actual forecasts of inflation based on survey data, denoted here by
ṗf

t+1,t; for yn
t , they use estimates of real potential GDP, denoted yp

t .6 To present
the population moment condition used in their GMM estimation,7 it is conve-
nient to define

eAS,t(φ) = ṗt − δṗf
t+1,t − ηṗt−1 − κ(yt − yp

t ), (5)

where φ = (δ, η, κ)′. Note that to begin we treat the coefficient ṗt−1 as unre-
stricted and ignore restriction in (2) that η = 1 − δ. The theory underlying
the NK model implies that Et−1[eAS,t(φ0)] = 0 and this conditional moment
restriction can be translated into a set of population moment conditions because
we have, for any wt−1 ∈ It−1,8

E [eAS,t(φ0)wt−1] = E [Et−1[eAS,t(φ0)wt−1]] = E [Et−1[eAS,t(φ0)]wt−1] = 0.

This population moment condition fits within our generic structure by writing
f(vt, θ) = eAS,t(φ)wt−1 with v′t = (ṗt, ṗ

f
t+1,t, ṗt−1, yt − yp

t , w
′
t−1) and θ = φ. It

can be recognized that E[eAS,t(φ0)wt−1] = 0 is the statement that the error of
the aggregate supply equation is uncorrelated with the variables in wt−1. Since
eAS,t(φ) is linear in both the data variables and parameters, it follows that

6Zhang, Osborn, and Kim (2008) estimate the model using US data. They consider dif-

ferent inflation forecasts obtained from the Survey of Professional Forecasts, the Greenbook

published by the Federal Reserve Board and the Michigan survey. The estimates of real GDP

are published by the Congressional Budget Office.
7It should be noted that Zhang, Osborn, and Kim (2008) include additional variable on

the right hand side for reasons discussed in their paper. For our purposes here, it suffices to

focus on the simpler specification in (2).
8This argument appeals to the Law of Iterated Expectations (e.g. see White (1984)[p.54

]) and the fact that if wt−1 ∈ It−1 then wt−1 can be treated as a constant when taking

expectations conditional on It−1.
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GMM estimation based on E[eAS,t(φ0)wt−1] = 0 exploits the same information
as IV estimation of the supply equation using wt−1 as instruments.9

In line with the original specification, it may be desired to impose the re-
striction η = (1 − δ) in which case, we can use similar arguments as above to
deduce the population moment condition E[ẽAS,t(ψ0)wt−1] = 0 where the pa-
rameter vector, ψ, now only consists of two elements, ψ = (δ, κ), and ẽAS,t(ψ)
is defined as eAS,t(φ) in (5) except that η is replaced by 1− δ. In this case, the
GMM estimation exploits the same information as restricted IV estimation of
(2) subject to the (linear) restriction η = (1 − δ) using wt−1 as instruments.

The population moment conditions discussed in this example both involve
the statement that the expectation of some function of the data and unknown
parameters times a vector of variables is zero. This generic structure occurs in
many macroeconomic models, and moment conditions of this form are refered
to as orthogonality conditions. �

Estimation of all model parameters simultaneously
BCM estimate all the parameters of the model simultaneously using GMM.
To do so, they adopt a model-based solution to the presence of unobservable
variables on the right-hand side. They specify equations for yn

t and ṗ∗t that
combined with (2)-(4) yield a macroeconomic model of the generic form

Bxt = α + AEt[xt+1] + Cxt−1 + Det (6)

where xt = (ṗt, yt, it, y
n
t , ṗ

∗
t )′, et is a vector of errors, and A, B, C and D are

matrices whose elements are functions of the parameters of the model. Equation
(6) implies the rational expectations equilibrium solution path for xt follows a
VAR(1), the parameters of which are functions of the parameters of the under-
lying model. While the latter representation is a relatively simple structure,
it is not convenient for estimation as xt includes two unobservables.10 How-
ever, BCM demonstrate that by including an equation for the term structure of
interest rates it is possible to obtain the following

zt = α(θ0) + Ω(θ0)zt−1 + Γ(θ0)ut (7)

where zt = (ṗt, yt, it, sn1,t, sn2,t), snj ,t is the spread between the nj-period bond
yield and it; θ0 is the true value of θ, the vector of the parameters of the
model, and α(θ), Ω(θ) and Γ(θ) vectors/matrices whose elements are functions
of θ; and ut is an innovation process. The key advantage of (7) is that all the
elements of zt are observable. If we put ut(θ) = Γ(θ)−1(zt − α(θ) − Ω(θ)zt−1)

9See Hall (2005)[Chap. 2].
10BCM show that this VAR(1) model implies that the observables (ṗt, yt, it) follow a

VARMA(3,2) process; the presence of an VMA component create computational problems

that render this representation unattractive as a vehicle for estimating the parameters of the

model.
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then BCM show that the innovation process satisfies Et−1[ut(θ0)] = 0 and
E[ut(θ0)ut(θ0)′] = I5, the identity matrix of dimension 5. The first of these
conditions implies the innovations have zero mean given It−1; the second set
implies that the innovations all have unit variance and are contemporaneously
uncorrelated. It therefore follows that within this model we have

E[f(vt, θ0)] = 0 (8)

where

f(vt, θ) =
[

ut(θ) ⊗ zt−1

vech{ut(θ)ut(θ)′ − I5}

]
,

vt = (z′t, z
′
t−1)

′ and vech(·) denotes the operator that stacks the lower diagonal
elements of a matrix into a vector. Notice that some elements of f(vt, θ) are
nonlinear functions of θ; also that the model leads naturally to a case in which
the number of population moment conditions (q = 40, here) exceeds the number
of parameters (p = 15). �

3 The GMM estimator and the first order con-

ditions

In this section, we present the GMM estimator and discuss certain issues per-
taining to its computation. It is noted in the introduction that the strength of
GMM comes from its flexibility in that it works for a wide variety of choices of
f(.). While this is true, the f(.) must satisfy certain restrictions and it is useful
to discuss these briefly before defining the estimator itself.

The population moment condition states that E[f(vt, θ)] equals zero when
evaluated at θ0. For the GMM estimation to be successful in a sense defined
below, this must be a unique property of θ0, that is E[f(vt, θ)] is not equal
to zero when evaluated at any other value of θ. If that holds then θ0 is said
to be identified by E[f(vt, θ0)] = 0. A first order condition for identification
(often refered to as a “local condition”) is that rank{G(θ0)} = p, where G(θ) =
E[∂f(vt, θ)/∂θ′], and this condition plays a crucial role in standard asymptotic
distribution theory for GMM. By definition the moment condition involves q
pieces of information about p unknowns, therefore identification can only hold
if q ≥ p. For reasons that emerge below it is convenient to split this scenario
into two parts: q = p, in which case θ0 is said to be just-identified, and q > p,
in which case θ0 is said to be over-identified.

Recalling that gT (θ) denotes the analogous sample moment to E[f(vt, θ)],
the GMM estimator is then as follows.

Definition 2 Generalized Method of Moments Estimator

6



The Generalized Method of Moments estimator based on (1) is θ̂T , the value of

θ which minimizes:

QT (θ) = gT (θ)′WT gT (θ) (9)

where WT is known as the weighting matrix and is restricted to be a positive

semi–definite matrix that converges in probability to W , some positive definite

matrix of constants.

To understand the intuition behind GMM, it is useful to first consider what
happens in the just-identified case. If q = p then there is in general a value of
θ that sets the sample moment equal to zero. By definition, this value also sets
QT (θ) to zero and so will be the GMM estimator. Thus in the just-identified
case, the GMM estimator is the value of θ that satisfies the analogous sample
moment condition, viz gT (θ̂T ) = 0. Now if θ0 is over-identified then there is
typically no solution for θ to the sample moment condition, gT (θ) = 0, and
QT (θ) is a measure of how far gT (θ) is from zero. Since the GMM estimator
minimizes QT (θ), it is the value of θ that sets gT (θ) as close as possible to zero or
- put another way - the GMM estimator is the value of θ that is closest to solving
the sample moment condition. The restrictions on WT are required to ensure
that QT (θ) is a meaningful measure of the distance the sample moment is from
zero at different values of θ. Clearly QT (θ) = 0 for gT (θ) = 0, and the positive
semi–definiteness of WT ensures QT (θ) ≥ 0. However, semi–definiteness leaves
open the possibility that QT (θ) = 0 without gT (θ) = 0. Positive definiteness
ensures QT (θ) = 0 if and only if gT (θ) = 0, but, since all our statistical analysis
is based on asymptotic theory, positive definiteness is only required in the limit.
The choice of weighting matrix is discussed further below.

In some cases, it is possible to solve analytically for the GMM estimator;
an example is the case of estimation of the parameters of the aggregate supply
equation based on E[eAS,t(φ0)wt−1] = 0.11 However, in most cases, it is not
possible to obtain a closed form solution for θ̂T , and so the estimator must be
found via numerical optimization. These routines involve an algorithm that
perfoms an “informed” iterative search over the parameter space to find the
value that minimizes QT (θ). Many computer packages now contain specific
commands for the implementation of GMM that produce both the estimates and
associated statistics of interest such as standard errors and model diagnostics.
Examples are the GMM option in Eviews and proc model in SAS.12 However,
in both these cases, the moment conditions must take the form of orthogonality

11See Hall (2005)[Chap. 2] for further discussion of this case.
12See, respectively, Eviews 6 User’s Guide II (http://www.eviews.com) and SAS/ETS(R)

9.2 User’s Guide (http://www.sas.com).
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conditions.13 Kostas Kyriakoulis has provided a user friendly MATLAB toolbox
for GMM estimation that provides a wide variety of GMM statistics irrespective
of the form of the moment condition.14

Various numerical optimization routines lie behind these procedures. While
we do not review the generic structure of such algorithms here, it is worth
highlighting two features common to most: the starting values and convergence
criterion, both of which can impact on the estimates. In many programmes,
the user must specify starting values for the parameters which represent the
point in the parameter space at which the search for the minimum begins. It is
good practice to initiate the numerical optimization multiple times with different
starting values on each. This offers protection against the twin possibilities that
either the algorithm converges to a local but not global minimum or it has stalled
in an area of the parameter space in which QT (θ) is relatively flat as a function
of θ. In most cases, the user also has control of the convergence criterion which
is the rule by which the numerical optimzation routine decides if the minimum
has been found. An example of such a rule is as follows: letting θ̂(k) denote
the value of θ after k iterations of the routine, the routine is judged to have
converged if ‖θ̂(k) − θ̂(k − 1)‖ < ε, where ε is some small positive number. In
other words, if the numerical optimization routine returns essentially the same
value for θ from two consecutive iterations then the minimum is judged to have
been found. This decision is clearly sensitive to the chosen value of ε, and the
choice of ε can have more impact than might be imagined; see Hall (2005)[Chap
3.2] for an example. Convergence can also be assessed by evaluation of the
derivatives of QT (θ) at θ̂(k), and this may yield different conclusions about
whether the minimum has been reached. It is therefore good practice to assess
convergence using multiple criteria.15

In many cases of interest, the GMM estimator can be characterized equiv-
alently as the solution to the first order conditions for this minimization that
is,

GT (θ̂T )′WT gT (θ̂T ) = 0, (10)

where GT (θ) = T−1
∑T

t=1 ∂f(vt, θ)/∂θ′, a matrix often refered to as the “Ja-
cobian” in our context here. The structure of these conditions reveals some
interesting insights into GMM estimation. Since GT (θ) is q × p, it follows that
(10) involves calculating θ̂T as the value of θ that sets the p linear combinations
of gT (.) to zero. Therefore, if p = q - and GT (θ̂T )′WT is nonsingular - then
θ̂T satisfies the analogous sample moment condition to (1), gT (θ̂T ) = 0, and is,

13It should be noted that SAS also offers numerical optimization routines that can be used

to obtain GMM estimators but do not provide related statistics of interest: see proc optmodel

and proc nlp in SAS/OR(R) 9.2 User’s Guide: Mathematical Programming.
14See http://www.kostaskyriakoulis.com/. This toolbox is linked to the presentation in Hall

(2005).
15See Hall (2005)[Chap.3.2] for further discussion.
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thus, the Method of Moments estimator based on the original moment condi-
tion. However, if q > p then the first order conditions are not equivalent to
solving the sample moment condition. Instead, θ̂T is equivalent to the Method
of Moments estimator based on

G(θ0)′WE[f(vt, θ0)] = 0, (11)

where G(θ) = E[GT (θ)]. Although (1) implies (11), the reverse does not hold
because q > p; therefore, in this case, the estimation is actually based on only
part of the original information. As a result, if q > p then GMM can be viewed
as decomposing the original moment condition into two parts, the identifying
restrictions, which contain the information actually used in the estimation, and
the overidentifying restrictions, which represents a remainder. Furthermore,
GMM estimation produces two fundamental statistics and each is associated
with a particular component: the estimator θ̂T is a function of the information
in the identifying restrictions, and the estimated sample moment, gT (θ̂T ), is a
function of the information in the overidentifying restrictions. While unused in
estimation, the overidentifying restrictions play a crucial role in inference about
the validity of the model as is discussed below.

In some circumstances, it may be desired to impose restrictions on the pa-
rameter vector as part of the estimation. Suppose the restrictions take the
form: r(θ0) = 0, where r(θ) is a s × 1 vector of continuous, differentiable func-
tions. These restrictions must form a coherent set of equations, and so satisfy
rank{R(θ0)} = s where R(θ) = ∂r(θ)/∂θ′. This can be handled straightfor-
wardly by using the so-called restricted GMM estimation.

Definition 3 The restricted GMM Estimator

Suppose the underlying economic model implies both the population moment

condition in (1) and also the (non)linear restrictions on θ0, r(θ0) = 0, then

the restricted GMM estimator is defined to be θ̃T , the value of θ that minimizes

QT (θ) subject to r(θ) = 0, where QT (θ) is defined in Definition 2. θ̂r,T is

referred to as the restricted GMM estimator.

In practice, the restricted GMM estimator is calculated on the computer by
using a constrained optimization routine that directly imposes the restrictions
specified by the user.
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4 Large sample properties, the choice of WT and

inference about θ0

In this section we summarize the (so-called) first order asymptotic theory for
θ̂T that forms the basis for the standard inference framework associated with
GMM. Implementation of this framework raises a number of practical issues
that are also addressed. Chief among them are the issue of covariance matrix
estimation and the choice of weighting matrix, the latter of which leads to the so-
called two-step or iterated GMM estimators. Since our focus here is on practical
issues, our discussion only highlights certain key assumptions and we present
neither a complete accounting of the necessary regularity conditions underlying
the statistical results nor any proofs; the interested reader is refered to Hall
(2005)[Chap. 3.4].

This first order asymptotic theory is obtained using statistical theorems,
such as the Law of Large Numbers and Central Limit Theorem, that involve
statements about the behaviour of sample moments as T → ∞. Such theory is
therefore only strictly valid for infinite samples and is used as an approximation
to finite sample behaviour. In Section 6, we briefly discuss the evidence on the
accuracy of this approximation in practical circumstances.

We begin with an important assumption abut the data.

Assumption 1 Time series properties of vt

The (r×1) random vectors {vt;−∞ < t < ∞} form a strictly stationary ergodic

process with sample space V ⊆ <r .

The stationarity assumption implies that the moment of functions of vt are inde-
pendent of time. Ergodicity places restriction on the memory of time vt. Taken
together, stationarity and ergodicity essentially place sufficient restrictions on vt

to permit the development of the limit theorems that underlie the large sample
theory discussed here. While this assumption applies to many of the time se-
ries that occur in macroeconomic models, it does exclude some important cases
such as processes with deterministic trends or unit root processes. However, in
cases where the population moment condition derives from a conditional mo-
ment restriction, it is sometimes possible to find a transformation that delivers a
population moment condition that involves stationary ergodic variables even if
the original conditional moment in question did not. To illustrate, suppose the
model implies the conditional moment restriction Et−1[ut(θ0)] = 0 where ut(θ)
depends on unit root processes; then it may be possible to find ht−1(θ0) ∈ It−1

such that kt(θ0) = ht−1(θ0)ut(θ0) is function of stationary ergodic variables.
Notice that, given the properties of ut(θ0) and ht−1(θ0), Et−1[kt(θ0)] = 0 and
this conditional moment restriction can form the basis of population moment
conditions in the way discussed in Section 2. This type of transformation is

10



often used (implicitly) in Euler equation models in which the first order condi-
tion for the representative agent’s optimization involves levels of macroeconomic
variables but it is manipulated to create an equation involving growth rates of
the same variables.16

To emphasize their importance in the theory, we also state the population
moment and identification conditions as an assumption. Note that for what
follows, it is important that the first order identification condition holds.17

Assumption 2 Population moment condition and identification con-

dition

(i) E[f(vt, θ0)] = 0; (ii) E[f(vt, θ̄)] 6= 0 for all θ̄ ∈ Θ such that θ̄ 6= θ0; (iii)

rank{G(θ0)} = p.

The large sample properties of the GMM estimator are summarized in the
following proposition.18

Proposition 1 Large sample behaviour of θ̂T

Let Assumptions 1, 2, and certain other regularity conditions hold then: (i)

θ̂T
p→ θ0; (ii) T 1/2(θ̂T − θ0)

d→ N (0, V ) where

V = [G(θ0)′WG(θ0)]−1G(θ0)′WS(θ0)WG(θ0)[G(θ0)′WG(θ0)]−1

and S(θ) = limT→∞V ar[T 1/2gT (θ)].

Proposition 1 states that the GMM is both consistent and T 1/2(θ̂T − θ0) con-
verges to a normal distribution. The latter result forms the basis of inference
procedures about θ0, but before discussing these, we consider the implications
of Proposition 1 for the choice of weighting matrix.

In the discussion of the first order conditions above, it is noted that if p = q
then the GMM estimator can be found by solving gT (θ̂T ). As a result, the
estimator does not depend on WT . The asymptotic properties must also be in-
variant to WT and it can be shown that V reduces to {G(θ0)′S(θ0)−1G(θ0)}−1

16For example see Hall (2005)[p.100-101].
17Contrary to the claim on Hall (2005)[p.53] this first order condition is not necessary for

identification. It is necessary, however, for the first order asymptotic theory of the GMM

estimator presented below; see Dovonon and Renault (2011).

18“
p→” signifies convergence in probability; “

d→” signifies convergence in distribution.
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in this case. However, if q > p then the first order conditions depend on WT and
therefore so does θ̂T in general. This dependence is unattractive because it raises
the possibility that subsequent inferences can be affected by the choice of weight-
ing matrix. However, in terms of asymptotic properties, Proposition 1 reveals
that the choice of weighting matrix only manifests itself in V , the asymptotic
variance of the estimator. Since this is the case, it is natural to choose WT such
that V is minimized in a matrix sense. Hansen (1982) shows that this can be
achieved by setting WT = Ŝ−1

T where ŜT is a consistent estimator of S(θ0). The
resulting asymptotic variance is V = V 0 = {G(θ0)′S(θ0)−1G(θ0)}−1; Chamber-
lain (1987) shows V 0 represents the asymptotic efficiency bound - that is, the
smallest asymptotic variance possible - for an estimator of θ0 based on (1).

In practical terms, two issues arise in the implementation of GMM with this
choice of weighting matrix: (i) how to construct ŜT so that it is a consistent
estimator of S(θ0); (ii) how to handle the dependence of ŜT on θ̂T . We treat
each in turn.

Estimation of S(θ0): Under stationarity and ergodicity and certain other
technical restrictions, it can be shown that S(θ0) = Γ0(θ0) +

∑∞
i=1{Γi(θ0) +

Γi(θ0)′} where Γi(θ0) = Cov[f(vt, θ0), f(vt−i, θ0)] is known as the i-lag autoco-
variance matrix of f(vt, θ0); see Andrews (1991). In some cases, the structure
of the model implies Γi(θ0) = 0 for all i > k for some k, and this simplifies
the estimation problem; see Hall (2005)[Chap. 3.5]. In the absence of such a
restriction on the autocovariance matrices, the long run variance can be esti-
mated by a member of the class of heteroscedasticity autocorrelation covariance
(HAC) estimators defined as

ŜHAC = Γ̂0 +
T−1∑

i=1

ω(i; bT )(Γ̂i + Γ̂′
i), (12)

where Γ̂j = T−1
∑T

t=j+1 f̂tf̂
′
t−j, f̂t = f(vt, θ̂T ), ω(.) is known as the kernel,

and bT is known as the bandwidth. The kernel and bandwidth must satisfy cer-
tain restrictions to ensure ŜHAC is both consistent and positive semi–definite.
As an illustration, Newey and West (1987b) propose the use of the kernel
ω(i, bT ) = {1 − i/(bT + 1)}I{i ≤ bT} where I{i ≤ bT} is an indicator vari-
able that takes the value of one if i ≤ bT and zero otherwise. This choice is
an example of a truncated kernel estimator because the number of included au-
tocovariances is determined by bT . For consistency, we require bT → ∞ with
T → ∞ but at a slower rate than T 1/2. Various choices of kernel have been
proposed and their properties analyzed: while theoretical rankings are possible,
the evidence suggest that the choice of bT is a far more important determinant
of finite sample performance. Andrews (1991) and Newey and West (1994) pro-
pose data-based methods for the selection of bT . Simulation evidence suggests
that the properties of HAC estimators are sensitive to the time series properties
of f(vt, θ0) and are adversely affected if f(vt, θ0) contains a strong autoregres-
sive component. Since this feature is common to many macroeconomic series,
Andrews and Monahan (1992) propose the use of the so-called prewhitening and
recolouring method for covariance matrix estimation in which the autoregressive
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component is filtered out of f(vt, θ̂T ) - the “prewhitening” - and then a HAC
matrix is used to estimate the long run variance of the filtered series; the esti-
mator S(θ0) is then constructed from the properties of the filter and the HAC of
the filtered series - the “recolouring”. To illustrate, suppose the filter is a Vector
Autoregressive (VAR) model of order one, in this case ŜT is calculated in three
steps: Step 1, regress f(vt, θ̂T ) on f(vt−1, θ̂T ) to obtain estimated coefficient ma-
trix Â and residuals dt = f(vt, θ̂T )− Âf(vt−1, θ̂T ); Step 2, construct D̂, a HAC
estimator of the long run variance of dt; Step 3, ŜT = (I − Â)−1D̂{(I − Â)−1}′.
Newey and West (1994) argue that the use of a VAR(1) filter suffices to sub-
stantially improve the properties of the long run covariance matrix estimator in
most cases encountered in macroeconomics.19 �

Dependence of ŜT on θ̂T : As is apparent from the above discussion, the calcu-
lation of a consistent estimator for S(θ0) requires knowledge of a (consistent)
estimator of θ0. Therefore, in order to calculate a GMM estimator that attains
the efficiency bound, a multi-step procedure is used. On the first step, GMM
is performed with an arbitrary weighting matrix; this preliminary estimator
is then used in the calculation of ŜT . On the second step, GMM estimation
is performed with WT = Ŝ−1

T . For obvious reasons, the resulting estimator is
commonly referred to as the two-step GMM estimator. Instead of stopping after
just two steps, the procedure can be continued so that on the ith step the GMM
estimation is performed using WT = Ŝ−1

T , where ŜT is based on the estima-
tor from the (i − 1)th step. This yields the so-called iterated GMM estimator.
While two-steps are sufficient to attain the efficiency bound, simulation evidence
suggests that there are often considerable gains to iteration in the sense of im-
provements in the quality of asymptotic theory as an approximation to finite
sample behaviour; see Hall (2005)[Chap. 6]. �

The distributional result in Proposition 1 can be used as a basis for infer-
ence procedures about θ0. Two types of inference are commonly of interest:
confidence intervals for elements of θ0, and statistics for testing the hypothesis
that the parameters satisfy a set of (non)linear restrictions. We consider each in
turn; since such inferences are typically performed using the two-step or iterated
estimator, we confine attention to this case.

Confidence interval for a parameter: Proposition 1(ii) implies that an approx-
imate 100(1 − α)% confidence interval for θ0,i, the ith element of θ0, is given
by

θ̂T,i ± zα/2

√
V̂T,ii/T , (13)

19See Hall (2005)[Chap 3.5] for discussion of other choices of kerrnel and other approaches

to long run variance matrix estimation.
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where V̂T,ii is the i−ith element of V̂T = [GT (θ̂T )′Ŝ−1
T GT (θ̂T )]−1, ŜT is a consis-

tent estimator of S(θ0) and zα/2 is the 100(1−α/2)th percentile of the standard
normal distribution. �

Testing hypotheses about the parameters: Newey and West (1987a) propose
Wald, Lagrange Multiplier (LM) and Diference (D) statistics for testing the
null hypothesis that θ0 satisfies a set of s nonlinear restrictions r(θ0) = 0, where
r(θ) satisfies the conditions imposed in Section 3. For brevity, we consider only
the Wald test statistic,

WT = Tr(θ̂T )′
[
R(θ̂T )V̂TR(θ̂T )′

]−1

r(θ̂T ). (14)

and, as a reminder, R(θ̄) = ∂r(θ)/∂θ′|θ=θ̄. Newey and West (1987a) establish
that the large sample distribution of WT is as follows.

Proposition 2 Large sample behaviour of WT

Let Assumptions 1, 2, and certain other regularity conditions hold. If r(θ0) = 0

then WT
d→ χ2

s where χ2
s denotes the χ2 distribution with s degrees of freedom.

Thus, an approximate 100α% significance level test of H0 : r(θ0) = 0 versus
H1 : r(θ0) 6= 0 can be performed using the decision rule: reject H0 if WT >
cs(α), where cs(α) is the 100(1 − α)th percentile of the χ2

s distribution.
To illustrate, suppose the aggregate supply equation is estimated based on

E [eAS,t(φ0)wt−1] - in other words ignoring the restriction on the coefficients
implied by (2) - and it is then desired to test if this restriction, η = 1 − δ,
holds. For consistency with our discussion here, we set this model in our generic
notation so that f(vt, θ) = eAS,t(φ0)wt−1 and θ = φ, implying that p = 3
and the individual elements of θ are θ1 = δ, θ2 = η and θ3 = κ. Using this
generic notation, the restriction of interest can be written as r(θ) = 0 where
r(θ) = 1 − θ1 − θ2. It follows that R(θ) is the 1 × 3 vector (−1,−1, 0). �

We conclude this section by summarizing the properties of the restricted
GMM estimator defined in Definition 2.20

Proposition 3 Large sample behaviour of θ̃T

Let Assumptions 1, 2, and certain other regularity conditions hold. (i) If r(θ0) =

0 then θ̃T
p→ θ0, but if r(θ0) 6= 0 then θ̃T 6 p→ θ0; (ii) If r(θ0) = 0 then T 1/2(θ̂T −

20For brevity we do not present the formula for VR and refer the interested reader to Hall

(2005)[Chap 5.3].
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θ0)
d→ N (0, VR) where V − VR is a positive semi-definite matrix, and V is

defined in Proposition 1.

Proposition 3(i) states that the restricted GMM estimator is only consistent for
θ0 if the restrictions imposed are valid information about θ0. Proposition 3(ii)
states that if we impose valid restrictions then T 1/2(θ̃T − θ0) converges to a
normal distribution the variance of which is either smaller than or equal to the
variance T 1/2(θ̂T − θ0). The latter implies the restricted estimator is at least
as efficient in large samples as its unrestricted counterpart. Taken together, the
results in Proposition 3 indicate we are never worse off in large samples from
imposing restrictions on the parameters - provided they are correct.

5 Testing the model specification

The large sample theory in the previous section is predicated on the assumption
that the model is correctly specified in the sense that E[f(vt, θ0)] = 0. If this
assumption is false then the arguments behind Proposition 1 break down, and
it is no longer possible to establish the consistency of the estimator. Since the
validity of the population moment condition is central to GMM, it is desirable
to assess whether the data appear consistent with the restriction implied by the
population moment condition. As noted above, if p = q then the first order
conditions force gT (θ̂T ) = 0 irrespective of whether or not (1) holds and so the
latter cannot be tested directly using the estimated sample moment, gT (θ̂T ).
However, if q > p then gT (θ̂T ) 6= 0 because GMM estimation only imposes the
identifying restrictions and ignores the overidentifying restrictions. The latter
represent q− p restrictions which are true if (1) is itself true and can be used as
a basis for a test of the model specification. To motivate the most commonly
applied test statistic, it is useful to recall two aspects of our discussion above:
(a) the GMM minimand measures the distance of gT (θ) from zero; (b) the esti-
mated sample moment contains information about overidentifying restrictions.
Combining (a) and (b), it can be shown that GMM minimand evaluated at
θ̂T is a measure of how far the sample is from satisfying the overidentifying
restrictions. This leads to overidentifying restrictions test statistic,

JT = TgT (θ̂T )′Ŝ−1
T gT (θ̂T ),

where θ̂T is the two-step (or iterated) GMM estimator and, once again, ŜT de-
notes a consistent estimator of S(θ0). The choice of notation reflects a tendency
in some articles to refer to this quantity as the “J-statistic”. Hansen (1982)
establishes the large sample behaviour of JT is as follows.

Proposition 4 Let Assumptions 1, 2, and certain other regularity conditions
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hold then JT
d→ χ2

q−p.

Thus, an approximate 100α% significance level test of H0 : E[f(vt, θ0) = 0
versus H1 : E[f(vt, θ0) 6= 0 can be performed using the decision rule: reject H0

if JT > cq−p(α); weher ca(b) is defined following Proposition 2.
Notice that JT is conveniently calculated as the sample size times the two-

step (or iterated) GMM minimand evaluated at the associated estimator. The
overidentifying restrictions test is the standard model diagnostic within the
GMM framework and is routinely reported in applications. Nevertheless, JT

is not able to detect all possible misspecifications of the model. In particular,
Ghysels and Hall (1990) show that JT can be insensitive to misspecification
due to neglected parameter variation. This “blind spot” may be a particular
concern in macroeconomic models with time series data as parameter variation is
a natural source of potential misspecification, and so it is prudent to complement
the overidentifying restrictions test with tests of structural stability; see Chapter
17 in this volume for further discussion of this issue and structural stability
testing in macroeconometric models.

6 Finite sample performance and the Continu-

ous Updating GMM estimator

The foregoing discussion has rested upon asymptotic theory. In finite samples,
such theory can only provide an approximation. It is therefore important to
assess the quality of this approximation in the types of model and sample sizes
that are encountered in economics. Intuition suggests that the quality is going
to vary from case to case depending on the form of the nonlinearity and the dy-
namic structure. A number of simulation studies have examined this question;
see inter alia Tauchen (1986), Kocherlakota (1990) and the seven papers in-
cluded in the July 1996 issue of Journal of Business and Statistics. It is beyond
the scope of this chapter to provide a comprehensive review of these studies.21

However, it should be noted that in certain circumstances of interest the quality
of the approximation is poor.

There are two possible explanations for the failure of this first order asymp-
totic theory to provide a good approximation to the behaviour of the estimator
in a particular model with a particular data set. First, the key assumptions
behind the distribution theory may be valid but the sample may simply not be
large enough for the first order asymptotic theory to be a good guide. Second,
the key assumptions behind the distribution theory may be inappropriate for
the case in hand. Both can occur in macroeconomic models. In the remain-
der of this section, we focus on an aspect of the structure of estimation that

21The interested reader is refered to Hall (2005)[Chap. 6].

16



may retard convergence in models where the key assumptions behind GMM are
valid. This discussion leads us to a modified version of the estimator known
as the Continuous Updating GMM (CUGMM) estimator. In the next section,
we discuss a scenario in which the poor approximation may be due to the near
failure of the key assumptions behind GMM.

So for the rest of this section, we suppose that the population moment
condition is valid and θ0 is first order identified (i.e. Assumption 2 holds).
We also focus on the two-step estimator and so set WT = Ŝ−1

T and W =
S−1. To understand why the first asymptotic theory in Proposition 1 may not
provide a good approximation in some settings, it is instructive to re-examine
the structure of the first order conditions of GMM estimation. Recall from our
earlier discussion that GMM can be considered a MM estimator based on the
information in (11) that is, the information that a certain linear combination
of the population moment condition is zero. As seen above, the weights of this
linear combination, G′

0W , involve unknown matrices that are replaced by their
sample analogs in GMM estimation.

However, for the purposes of our discussion here, suppose those weights were
actually known and thus that one could obtain an estimator of θ0 by solving
the equations

G′
0WgT (θ̂∗T ) = 0

for θ̂∗T . Newey and Smith (2004) show that θ̂∗T has the same first order asymp-
totic distribution as θ̂T but has better finite sample bias properties; for the
purposes of exposition, it is useful to have a name for θ̂∗T and we refer to this as
the “ideal” GMM estimator. Further Newey and Smith (2004) trace the source
of this comparative advantage to the equations solved for θ̂∗T and θ̂T as we now
describe.

From Assumption 2(i) and G′
0W constant (by definition), it follows that θ̂∗T

is obtained by solving a set of equations that has the property that

E [G(θ0)′WgT (θ0)] = 0 for any T.

Thus, the “ideal” GMM estimator can be seen to be based on valid information
about θ0 in the sense that θ̂∗T solves a set of equations that when evaluated at
θ0 are satisfied in expectation for any T .

In contrast, GMM estimation is based on solving the equations hT (θ) = 0
where hT (θ) = GT (θ)′WT gT (θ). Since GT (θ0)′WT are functions of the data,
it no longer follows automatically from Assumption 2(i) that E[hT (θ0)] = 0:
in fact, if GT (θ0)′WT is correlated with gT (θ0) then E[hT (θ0)] 6= 0. In such
cases, GMM is based on a set of equations that represent invalid information
about θ0 for finite T and it thus may be anticipated that the GMM estimator is
more biased than its “ideal” counterpart. However, since both the Jacobian and
sample moment involve averages they are converging to constants as T → ∞
and this combined with our assumptions about the limit of WT ensure that

E [GT (θ0)′WT gT (θ0)] → 0 as T → ∞.
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In other words, GMM is based on a set of equations that represent valid infor-
mation about θ0 in the limit as T → ∞.

It should be noted that there are cases in which E[hT (θ0)] = 0 and so GMM
estimation is based on information that is valid for any T : a leading exam-
ple is estimation of linear models via instrumental variables with conditionally
homoscedastic and symmetrically distributed errors.22 But such a scenario is
the exception rather than the rule. Thus in general, GMM can be viewed as
being based on information that is only valid in large samples, and as a result
the first order asymptotic theory can be anticipated only to provide a good
approximation in large samples.

This aspect of GMM estimation has stimulated research into alternative esti-
mators based on information in the population moment condition. We focus on
just one here, the Continuous Updating GMM (CUGMM) estimator proposed
by Hansen, Heaton, and Yaron (1996), because it is both the most closely re-
lated to GMM and also relatively straightforward to apply to time series data.
To motivate the form of the CUGMM estimator, we recall that the optimal
weighting matrix has been shown to be S(θ0)−1. It was remarked earlier that
this optimal choice is in most cases dependent on θ0 and that one way to resolve
this dependence is to use a multi-step procedure in which WT = Ŝ−1

T with ŜT

based on the estimator of θ0 from the previous step. An alternative way to
handle this dependence is estimate θ0 by minimizing

Qcu
T (θ) = gT (θ)′ST (θ)−1gT (θ),

where ST (θ) is a (matrix) function of θ such that ST (θ0)
p→ S(θ0). Hansen,

Heaton, and Yaron (1996) refer to the resulting estimator as CUGMM and show
it has the same limiting distribution as the iterated GMM estimator. However,
Newey and Smith (2004) and Anatolyev (2005) demonstrate analytically that
the continuous-updating estimator can be expected to exhibit lower finite sample
bias than its two-step counterpart. Interestingly, this comparative advantage
can be linked back to the first order equations of CUGMM. Donald and Newey
(2000) show that the first order conditions of CUGMM take the form

G̃T (θ)′ST (θ)−1gT (θ) = 0,

where G̃T (θ)′ST (θ)−1 can be thought of as estimating the weights G(θ0)′W . The
first order conditions of CUGMM and GMM thus have the same generic form:
the crucial difference is that G̃T (θ) is uncorrelated with gT (θ) by construction.
Recalling that it is the correlation between GT (θ0)′WT and gT (θ0) that is argued
to be the source of the finite sample biases of GMM, it can be anticipated that
the CUGMM estimator leads to an estimator whose finite sample behaviour is
better approximated by its first order asymptotic distribution.

While it may dominate in terms of statistical properties, it should be noted
that CUGMM involves a much more complex minimand than GMM, and thus

22See Newey and Smith (2004)[p.228].

18



finding its minimum can be challenging; see Hall (2005)[Chap 3.7] for further
discussion and a numerical illustration.

We conclude this section by briefly mentioning two other approaches to im-
proving inference based on GMM in settings where the key assumptions behind
the first order asymptotic theory apply. The first such approach is the use of
the bootstrap, and this has been explored in the context of GMM by Hall and
Horowitz (1996). The second is the use of formal data-based moment selection
techniques that are designed to uncover which moments lead to estimators whose
finite sample behaviour is best approximated by standard first order asympttoic
theory. Since neither approach has been widely employed in macroeconomic ap-
plications to our knowledge, we do not explore them in detail here but refer the
interested reader to reviews in Hall (2005)[Chaps 7.3 & 8.1].

7 Weak identification

The first order asymptotic theory in Proposition 1 is predicated on the assump-
tion that θ0 is first order identified by the population moment condition. In a
very influential paper, Nelson and Startz (1990) pointed out that this proviso
may not be so trivial in situations which arise in practice and provided the first
evidence of the problems it causes for the inference framework we have described
above. Their paper has prompted considerable interest and has led to a vast
literature on what has become known as weak identification. The problem of
weak identification can arise in macroeconomic models: for example, Mavroei-
dis (2005) demonstrates conditions in which it arises in GMM estimation of
versions of the aggregate supply curve, equation (2) above, in which Et[ṗt+1] is
replaced by ṗt+1.23 In this section, we briefly review the problems caused by
weak identification and some potential solutions.

The statistical analysis of GMM under weak identification involves some
quite subtle and sophisticated arguments, and so we do not attempt to reproduce
them here. Instead, we focus on the essence of the concept. We first consider
the consequences of failure of the first order identification condition. Consider
the population analog to the first order conditions for GMM estimation. Recall
that if θ0 is first order identified then (11) can be thought of as the information
on which GMM estimation is based. Now if rank{G(θ0)} < ` < p then this
set of equations represents only ` pieces of unique information about the p
elements of θ0 and is thus insufficient information to tie down their value. As
a consequence the first order asymptotic theory in Proposition 1(ii) no longer
holds. Consistency may also be lost but this depends on the behaviour of
the minimand and the Jacobian.24 Following Stock and Wright (2000), weak
identification is the term used to denote the case in which E[GT (θ0)] → 0 at a

23See Kleibergen and Mavroeidis (2009) for an application of the methods described in this

section to the aggegate supply curve.
24The characterization of the GMM estimator via the first order conditions is crucial for the
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rate of T−1/2. In this case, Stock and Wright (2000) show the GMM estimator
is not consistent and conventional inference procedures based on first order
asymptotic theory are no longer valid.

Kleibergen (2005) proposes inference procedures that can be used irrespec-
tive of whether or not the parameter vector is identified. Suppose it is desired
to test H0 : θ0 = θ̄. The so-called K-statistic for testing this hypothesis is

KT (θ̄) = TkT (θ̄)′
{
G̃T (θ̄)′{ST (θ̄)}−1G̃T (θ̄)

}−1

kT (θ̄)

where kT (θ̄) = G̃T (θ̄)′{ST (θ̄)}−1gT (θ̄), ST (θ0) is a consistent estimator of S(θ0)
and G̃T (θ̄) is the estimator of the Jacobian employed in CUGMM (discussed in
the previous section). Kleibergen (2005) establishes the following.

Proposition 5 If Assumption 1, 2(i) and certain other regularity conditions

hold then under H0 : θ0 = θ̄, KT (θ̄) d→ χ2
p.

Crucially, the conditions for Proposition 5 do not include any statements about
the identification of θ0. Two aspects of KT (θ̄) explain this invariance to iden-
tification: first, the test is based on the Lagrange Multiplier principle and thus
requires an “estimation” under the null hypothesis and, with this H0, there is
no estimation as the value of θ0 is completely specified; second, as noted in the
previous section, G̃T (θ̄) is orthogonal to gT (θ) by construction, and this means
the behaviour of the sample moment is independent of the behaviour of the
Jacobian.25

The null hypothesis above involves all elements of θ. Kleibergen (2005) also
presents a modified version of the tests that allows the null hypothesis to involve
only a subset of the parameters. So suppose θ = (β′, γ′)′, where β is pβ ×1, and
the hypothesis of interest is H0 : β0 = β̄. In this case, β0 may be unidentified
but γ0 must be first order identified given β0; let γ̂∗T (β̄) denote the two-step
GMM estimator of γ0 based on E[f(vt, θ0)] = 0 with β0 = β̄. Kleibergen’s
(2005) statistic for H0 : β0 = β̄ is of similar structure to KT (θ) but is evaluated
at θ = (β̄′, γ̂(β̄)′)′, and is shown to converge to a χ2

pβ
under this null.26

KT (θ) can also be inverted to construct a confidence sets for θ0 as follows:
the 100(1−α)% confidence set for θ0 contains all values of θ for which KT (θ) <
cp(α). Notice that unlike the intervals in (13), the result is a set of values
for the entire parameter vector. A further important difference is that the

derivation of asymptotic normality result in Proposition 1(ii). However, this characterization

is not needed to establish consistency; for example see Hansen (1982).
25In contrast, if this hypothesis is tested using the conventional Wald, D or LM statistics

based for GMM (Newey and West (1987a), and discussed in Section 4 above) then these

statistics only have a limiting χ2
p under the null if θ0 is identified; see Kleibergen (2005).

26See Kleibergen (2005) for further details.
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intervals in (13) are of finite length by construction whereas the sets based on
KT (θ) may be infinite, reflecting cases where the population moment condition
is completely uninformative about θ0, being consistent with all possible values
of θ.27 While such confidence sets have the attractive feature of being robust
to failures of identification, the computational burden associated with their
calculation increases with p and makes this approach infeasible for large p.

A potential weakness of using the K-statistic is that it may fail to reject
H0 : θ0 = θ̄ in circumstances when E[f(vt, θ̄)] 6= 0 and so the parameter value
θ̄ is incompatible with the population moment condition, and thus the under-
lying economic model. To protect against this eventuality, Kleibergen (2005)
proposes testing E[f(vt, θ̄)] = 0 using a statistic, J̃T (θ̄), that is variant of the
overidentifying restrictions. Notice that like the K-statistic, J̃T (θ̄), does not
involve an estimated value of θ and thus avoids problems that face conventional
GMM statistics caused by lack of identification. Kleibergen (2005) shows that
under E[f(vt, θ̄)] = 0 the J̃T (θ̄) converges to a χ2

q−p distribution. Exploiting
the independence of J̃T (θ̄) and KT (θ̄) in large samples, Kleibergen (2005) rec-
ommends examining both statistics to assess whether θ̄ is compatable with the
model.28

8 Inference based on moment inequalities

So far, we have considered the situation in which the information about the
parameter vector consists entirely of a population moment condition. This is
by far the leading case in applications to date. However, in recent years, there
has been interest in settings where the information consists either partially or
exclusively of moment inequalities. For example, moment inequalities naturally
arise in models for the behaviour of central banks; e.g. see Moon and Schorfheide
(2009) and Coroneo, Corradi, and Monteiro (2011). In this section, we briefly
discuss the Generalized Moment Selection method that has been proposed by
Andrews and Soares (2010) for performing inference about the parameters in
these kinds of models.

Suppose the underlying macroeconomic model implies

E[f(vt, θ0)]
{

= 0, for i = 1, 2 . . .q1,
≥ 0, for i = q1 + 1, . . .q. (15)

Thus, the infomation about the parameters consists of q1 population moment
27If θ0 is not first order identified then the intervals in (13) are invalid; see Dufour (1997)

for further discussion.
28See Kleibergen (2005) for further details of the construction of these statistics and some

other approaches to inference in this setting.
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conditions - or moment equalities - and q2 = q − q1 moment inequalities.29 In
what follows, no presumption is made about whether or not this information
identifies θ0.

Andrews and Soares (2010) introduce a framework for constructing confi-
dence sets for θ0 in this setting based on the inversion of a member of a suitably
defined class of test statistics.30 To summarize the basic ideas behind their
approach, we focus on one particular member of this class,

AT (θ) =
q1∑

i=1

{
gT,i(θ)

ŝ
(i)
T (θ)

}2

+
q∑

i=q1+1

{
[gT,i(θ)]−
ŝ
(i)
T (θ)

}2

(16)

where gT,i(θ) is the ith element of gT (θ), {ŝ(i)T (θ)}2 is the (i, i)th element of ST (θ)
(defined in Section 6), [x ]− = xI(x < 0) and I(a) is an indicator variable that
takes the value one if the event a occurs and is zero otherwise.

It can be recognized that AT (θ) is the sum of two terms, one reflecting the
sample moments associated with the moment equalities and one reflecting the
the sample moments associated with the moment inequalities. Notice that in
both these terms, a sample moment only affects the value of AT (θ) if it does not
satisfy the restriction in (15). So, for example, the first element of f( · ) appears
in an equality in (15) and gT,1(θ) only impacts on AT (θ) if gT,1(θ) 6= 0; and the
(q1 + 1)th element of f( · ) appears in an inequality in (15), and gT,q1+1(θ) only
impacts on AT (θ) is gT,q1+1(θ) < 0.

The confidence set for θ0 is then constructed as {θ̄ : AT (θ̄) < cT (α)}
where cT (α) is the 100(1 − α)th percentile of the distribution of AT (θ̄) under
the assumption that (15) holds at θ0 = θ̄. It turns out that the (limiting)
distribution of AT does not have a convenient form, such as χ2, because it
depends the degree of slackness of each of the inequality constraints that is, it
depends on whether or not each of the the moment inequalities is close or far
from being an equality. Andrews and Soares (2010) consider a number of ways
of calculating cT (α) and recommend the use of bootstrap methods. Given the
construction of AT (θ) its value is unaffected by any moment inequality that is
far from being an equality. It is therefore desirable not to allow such moments
to affect the simulated sampling distribution of the statistic. To achieve this
goal, Andrews and Soares (2010) propose a data-based method for determining
which moment inequalities are close and which far from being equalities. It is
this feature that gives the method the name of “Generalized Moment Selection”.

29Note that the sign of the inequality does not matter. If the underlying model implies

E[f(vt, θ0)] ≤ 0 then this can be fit within the framework here by re-writing this condition as

E[f̃(vt, θ0)] ≥ 0 with f̃( · ) = −f( · ).
30Also see Chernozhukov, Hong, and Tamer (2007).
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