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Abstract

Motivated by empirical analyses in economics using repeated cross-section data, we propose

info-metric methods (IM) for estimation of the parameters of statistical models based on

the information in population moment conditions that hold at group level. The info-metric

estimation can be viewed as the primary approach to a constrained optimization. The

estimators can also be obtained via the dual approach to this optimization, known as Gen-

eralized Empirical Likelihood (GEL). In a companion paper, we provide a comprehensive

framework for inference based GEL with the grouped-specific moment conditions. In this

chapter, we compare the computational requirements of the primary and dual approaches.

We also describe the IM/GEL inference framework in the context of a linear regression

model that is estimated using the information that the mean of the error is zero for each

group. For the latter setting, we use analytical arguments and a small simulation study

to showthat the IM/GEL approach to estimation yields more reliable inference in finite

samples than certain extant methods.

Key words: Microeconometrics, repeated cross-section data, pseudo-panel methods,

Generalized Empirical Likelihood, Generalized Method of Moments



1 Introduction

Microeconometrics involves the use of statistical methods to analyze microeconomic issues.

In this context the prefix “micro” implies that these economic issues relate to the behaviour

of individuals, households or firms. Examples include: how do households choose the

amount of their income to spend on consumer goods and the amount to save? How do

firms choose the level of output to produce and the number of workers to employ?

The answers to these questions start with the development of an economic theory that

postulates an explanation for the phenomenon of interest. This theory is most often ex-

pressed via an economic model, which is a set of mathematical equations involving economic

variables and certain constants, known as parameters, that reflect aspects of the economic

environment such as taste preferences of consumers or available technology for firms. While

the interpretation of these parameters is known, their specific value is not. Therefore, in

order to assess whether the postulated model provides useful insights, it is necessary to

estimate appropriate values for these parameters based on observed economic data.

For microeconometric analyses, there are three main kinds of data available: cross-

section, panel (or longitudinal) and repeated cross-section. Cross-section data consists of a

sample of information on individuals, say, taken at a moment in time. Panel data consists

of a sample of individuals who are then observed at regular intervals over time. Repeated

cross-section data consists of samples from a population of individuals taken at regular

intervals over time. Unlike in the case of panel data, repeated cross-section data involves a

fresh sample of individuals is taken each time period, and so the same individuals are not

followed over time.

A number of statistical methods are available for estimation of econometric models.

In choosing between them an important consideration is that the implementation of the

estimation method should not require the imposition of restrictions on the statistical be-

haviour of the economics variables beyond those implied by the economic model. For if

these additional statistical restrictions turn out to be inappropriate then this may under-
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mine subsequent inferences about the economic question of interest. For example, the

estimation method known as Maximum Likelihood (ML) requires requires the specification

of the complete probability distribution of the data but typically this information is not part

of an economic model. As a result, ML is not an attractive choice in this context. While

economic models usually do not imply the complete probability distribution, they do imply

restrictions on functions of both the economic variables and unknown parameters. These

restrictions, known as population moment conditions, can provide the basis for estimation

of the parameters.

Lars Hansen was the first person to provide a general framework for population moment

based estimation in econometrics. In his seminal article in Econometrica in 1982, Hansen

introduced the Generalized Method of Moments (GMM) estimation method.1 GMM has

been widely applied in economics but with this familiarity has come an understanding

that GMM-based inferences may be unreliable in certain situations of interest. This has

stimulated alternative methods for estimation based on population moment conditions.

Leading examples are the continuous updating GMM estimator (CUE; Hansen, Heaton,

and Yaron, 1996), empirical likelihood (EL; Owen, 1988; Qin and Lawless, 1994) and

exponential tilting (ET; Kitamura and Stutzer, 1997). While all three can be justified

in their own right, it has been realized that they can also be regarded as special cases

of more general estimation principles: info-metric (IM; Kitamura, 2007; Golan, 2008) or

generalized empirical likelihood (GEL; Smith, 1997).

Both GMM and IM/GEL can be straightforwardly applied in the case where the data

are a random sample from a homogeneous population, as is typically assumed for cross-

section and panel data. In this case, the comparative properties of GMM and IM are well

understood: under certain key assumptions about the information content of the population

moment conditions, both estimators have the same large sample (first order asymptotic)

properties. However, IM estimators exhibit fewer sources of finite sample bias, and IM-based

inference procedures are more robust to circumstances in which the information content of

1Hansen was co-winner of the 2013 Nobel prize for Economics for his work on empirical analysis of asset
pricing models, and especially the development of GMM which has been widely applied in empirical finance.
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the population moment conditions is low.

However, the case of repeated cross-section data has received far less attention in the

literature on moment-based estimation, even though such data is prevalent in the social

sciences.2 While certain GMM approaches have been proposed, to our knowledge IM meth-

ods have not been developed.3 Part of the reason may be due to the fact that the original

IM/GEL framework applies to samples from homogeneous populations but this does not

match the assumptions typically applied in econometric analysis of repeated-cross section

data. For example, one popular method - Deaton’s (1985) “pseudo-panel” approach - re-

quires the population to consist of a number of different homogeneous sub-populations. In

a recent paper, Andrews, Hall, Khatoon, and Lincoln (2015) (AHKL, hereafter) propose an

extension of the GEL framework to allow for estimation and inference based on population

moment conditions that hold within the sub-populations. Since the sub-populations are

often associated with groups of individuals or firms, the estimator is referred to as GEL

with group specific moment conditions, GEL-GMC for short. AHKL establish the consis-

tency, first order asymptotic normality and second order bias properties of the GEL-GMC

estimator, and also the large sample properties of a number of model diagnostic tests.

Our first contribution in this chapter is to provide an IM counterpart to the GEL-

GMC estimator and to compare the computational requirements of the two approaches.

Our second contribution is to describe the GEL-GMC based inference framework in the

leading case in which a linear regression model with potentially group-specific parameters

is estimated using the information that the expectation of the regression error is zero in each

group. This allows us to make a direct comparison with a pseudo-panel estimator which

is a popular approach to linear model estimation based on repeated cross-section data.

Using both theoretical analysis and evidence from a simulation study, it is shown that the

IM/GEL-GMC estimator yields more reliable inference than the pseudo-panel estimator

2For example, the UK Government’s Data Service identifies key data sets for analysis of various issues
relevant to public policy: of the 22 data sets identified for their relevance to environmental and energy issues
6 consist of repeated cross-sections; of the 34 data sets identified for the relevance to health and health-related
behaviour 13 consist of repeated cross-sections; see http://ukdataservice.ac.uk/get-data/themes.aspx.

3See inter alia Bekker and van der Ploeg (2005), and Collado (1997), and Inoue (2008).
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considered here.

An outline of the chapter is as follows. Section 2 provides a brief review of GMM and

IM/GEL where the data are a random sample from a homogeneous population. Section 3

describes Deaton’s (1985) pseudo-panel approach, demonstrating how it depends crucially

on the population being non-homogeneous. Section 4 provides the IM version of AHKL’s

GEL-GMC framework. Section 5 describes the GEL-GMC framework in the context of the

linear regression model estimated, and compares GEL-GMC to the pseudo-panel approach,

and Section 6 concludes.

2 GMM and IM/GEL

In this section we briefly review the GMM and IM/GEL estimation principles for data

obtained as a random sample from a homogeneous population.

Our econometric model is indexed by a vector of parameters that can take values in Θ,

a compact subset of R
p. We wish to estimate the true value of these parameters, denoted

θ0. The economic variables are contained in the random vector v with sample space V and

probability measure µ. It is assumed that we have access to a random sample from this

population, denoted {vi; i = 1, 2, . . . , n}.

We consider the case where estimation of θ0 is based on the population moment condition

(pmc),

E[f(v, θ0)] = 0, (1)

where f : V × Θ → R
q.

The population moment condition states that E[f(v, θ)] equals zero when evaluated at

θ0. For the GMM or IM/GEL estimation to have the statistical properties described below,

this must be a unique property of θ0, that is E[f(v, θ)] is not equal to zero when evaluated

at any other value of θ. If that holds then θ0 is said to be identified by E[f(v, θ0)] =

0. A first order condition for identification is that rank{G(θ0)} = p, where G(θ0) =

E[∂f(v, θ)/∂θ′
∣

∣

θ=θ0

], and this condition plays a crucial role in standard asymptotic dis-
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tribution theory for these estimators; G(θ0) is commonly known as the “Jacobian”. By

definition the moment condition involves q pieces of information about p unknowns, there-

fore identification can only hold if q ≥ p. For reasons that emerge below it is convenient to

split this scenario into two parts: q = p, in which case θ0 is said to be just-identified, and

q > p, in which case θ0 is said to be over-identified.

We illustrate this condition with two popular examples in microeconometrics.

Example 1: Instrumental Variable estimation based on cross-section data

Suppose it is desired to estimate θ0 in the model

y = x′θ0 + u

where y is the dependent variable, x a vector of explanatory variables and u represents an

unobserved error term. If E[u|x] = 0 then θ0 can be estimated consistently via Ordinary

Least Squares (OLS). However, in many cases in econometrics, this moment condition will

not hold, with common reasons for its violation being simultaneity, measurement error or

an omitted variable.4 These problems are commonly circumvented by seeking a vector

of variables z - known as an instrument - that satisfies the population moment condition

E[zu] = 0 and the identification condition rank{E[zx′]} = p.5 In this case v = (y, x′, z′)′

and f(v, θ) = z(y − x′θ). �

Our second example involves panel data in which individuals are observed for a num-

ber of time periods. In view of this structure, it is most convenient to index the random

variables by both i, indicating the individual, and t, the time period. As is most often the

case in microeconometric applications, the number of time periods, T , is treated as fixed,

and the sample becomes large through the number of individuals, n, going to infinity.

4These occur respectively if: y and x are simultaneously determined; the true model is y = x′

∗θ0 + e and
x = x∗ + w; explanatory variables have been omitted from the right hand side of the regression equation.

5As the pmc is linear in θ0 identification and first-order identification are identical.
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Example 2: Linear panel data models

Suppose it is desired to estimate the scalar parameter θ0 in the panel data model

yi,t = x′
i,tθ0 + ui,t, i = 1, 2, . . . , n; t = 2, . . .T (2)

where yi,t is the scalar dependent variable, xi,t is a vector of explanatory variables, ui,t =

ai + wi,t. In this case, the unobserved error is of composite form consisting of an individ-

ual effect, ai, and an idiosyncratic component, wi,t. For each individual, the idiosyncratic

error is mean zero, serially uncorrelated, and uncorrelated with the individual effect and

xi,t. The individual effect has mean zero, but is correlated with xi,t, and so is known as a

“fixed effect”. As a result, xi,t is correlated with the error ui,t, and so OLS estimation of

θ0 based on (2) would yield inconsistent estimators.6 However, it can be shown that the

following moment conditions hold: E[∆xi,t∆ui,t(θ0)] = 0 where ∆ui,t(θ) = ∆yi,t − ∆x′
i,tθ

and ∆ is the first (time) difference operator. The intuition behind the form of the moment

conditions can be obtained by noting that ∆ui,t(θ0) = ∆wi,t and so first differencing elimi-

nates the fixed effect which is the source of the correlation between the error and regressors.

Identification holds provided E[∆xi,t(∆xi,t)
′] is full rank. In this case, vi,t = (∆yi,t,∆x′

i,t)
′

and f(vi,t, θ) = ∆xi,t∆ui,t(θ). �

The Generalized Method of Moments estimator based on (1) is defined as

θ̂GMM = argmin
θ∈Θ

gn(θ)′Wngn(θ),

where gn(θ) = n−1
∑n

i=1 f(vi, θ) is the sample moment, Wn is known as the weighting

matrix and is restricted to be a positive semi–definite matrix that converges in probability

to W , some positive definite matrix of constants. The GMM estimator is thus the value of

θ that is closest to setting the sample moment to zero. The measure of distance for gn(θ)

from zero depends on the choice of Wn, and we return to this feature below.

6If ai is uncorrelated with xi,t then it is said to be a “random effect”.
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“Info-metric” stands for a combination of Information and Econometric theory, and

captures the idea that this approach synthesizes work from these two fields. However, we

note its implementation in this context is also referred to as “minimum discrepancy”, see

Corcoran (1998). Whichever way we refer to it, the key to this approach is that the pmc

is viewed as a constraint on true probability distribution of data. If M is a set of all

probability measures then the subset that satisfies pmc for a given θ is

P(θ) =

{

P ∈ M :

∫

f(v, θ)dP = 0

}

,

and the set that satisfies the pmc for all possible values of θ is

P = ∪θ∈ΘP(θ).

Estimation is based on the principle of finding the value of θ that makes P(θ) as close as

possible to the true distribution of data. To operationalize this idea, we work with discrete

distributions. Let πi = P (v = vi) and P = [π1, π2, . . . , πn]. Assuming no two sample

outcomes for v are the same, the empirical distribution of the data attaches the probability

of 1/n to each outcome. It is convenient to collect these empirical probabilities into a 1×n

vector µ̂ whose elements are all 1/n and whose ith element can thus be interpreted as the

empirical probability of the ith outcome. The IM estimator is then defined to be:

θ̂IM = arg inf
θ∈Θ

Dn(θ, µ̂)

where

Dn(θ, µ̂) = inf
P̂

D(P̂ ‖ µ̂),

P̂(θ) =

{

P̂ : πi > 0,

n
∑

i=1

πi = 1,

n
∑

i=1

πif(vi, θ) = 0

}

,

and D( · ‖ ·) is a measure of distance. An interpretation of the estimator can be built up
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as follows. P̂(θ) is the set of all discrete distributions that satisfy the pmc for a given

value of θ. Dn(θ, µ̂) represents the shortest distance between any member of P̂(θ) and the

empirical distribution for a particular value of θ. θ̂IM is the parameter value that makes this

distance as small as possible over θ. To implement the estimator, it is necessary to specify a

distance measure. Following Kitamura (2007), this distance is defined as n−1
∑n

i=1 φ(nπ̂i)

where φ( · ) is a convex function.7 As noted in the introduction, the IM framework contains

a number of other estimators as a special case; for EL φ(·) = −log(·), for ET φ(·) = (·)log(·),

for CUE φ(·) = 0.5[(·)− 1]2. This IM approach emphasizes the idea of economic modles

placing restrictions on the probability distribution of the data.

While the IM perspective is intuitively appealing, it is often more convenient for the

purposes of developing the statistical theory to take the GEL perspective, which is es-

sentially the dual of the IM approach, even though it was derived by Smith (1997) via a

different route.8 Smith (1997) defines the GEL estimator of θ0 to be

θ̂GEL ≡ arg min
θ∈Θ

sup
λ∈Λn

Cn(θ, λ),

where

Cn(θ, λ) =
1

n

n
∑

i=1

[ρ(λ′fi(θ))− ρ0],

ρ(a) is a continuous, thrice differentiable and concave function on its domain A, an open

interval containing 0, ρ0 = ρ(0), and λ is an auxiliary parameter vector restricted so that

λ′fi(θ) ∈ A (with probability approaching one), for all (θ′, λ′)′ ∈ Θ × Λn and i = 1, ..., n.9

The auxiliary parameter vector λ is the Lagrange Multiplier on the constraint that the

moment condition holds in the IM formulation. Once again particular choices of ρ(·) yield

the CU, EL and ET estimators: ρ(a) = log(1−a) for EL; ρ(a) = −ea for ET; ρ(a) quadratic

for CU. Within the GEL, the probabilities are defined implicitly. Smith (1997) and Newey

7This is known as the f -divergence between the two discrete distributions in this case {p̂i} and {µ̂i}.
8See Newey and Smith (2004), Kitamura (2007) and Parente and Smith (2014) for further discussion.
9Specifically, Λn imposes bounds on λ that “shrink” with n, but at a slower rate than n−1/2 which is the

convergence rate of the GEL estimator for λ.
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and Smith (2004) show that the GEL estimator of πi is given by

π̂i,GEL =
ρ1

(

λ̂′f(vi, θ̂GEL)
)

∑n
i=1 ρ1

(

λ̂′f(vi, θ̂GEL)
) ,

where ρ1(κ̄) = ∂ρ(κ)/∂κ|κ=κ̄. Newey and Smith (2004) show that π̂i,GEL is guaranteed to

be positive provided λ̂′f(vi, θ̂GEL) is uniformly (in i) small.

A crucial difference between GMM and IM/GEL optimizations is that the latter not

only estimates θ0 but also provides estimated probabilities for the outcomes in the data

{π̂i} that are constructed to ensure the sample analog to (1) is satisfied at θ̂. As a result,

the estimated sample moment is set equal to zero in IM/GEL but is not in GMM. This

difference turns out to be key for understanding key differences in the statistical properties

of the estimators, as we now discuss.

If θ0 is just-identified by the pmc then GMM and IM/GEL estimators are identical, being

equal to the Method of Moments estimator based on (1). If θ0 is over-identified then subject

to certain regularity conditions - including identification and first-order identification - it

can be shown that: (i) the GMM and IM/GEL are consistent for θ0; (ii) the so-called “two-

step” GMM estimator and IM/GEL have the large sample distributions given by: n1/2(θ̂ −

θ0)
d→ N ( 0, Vθ ) where Vθ = {G(θ0)

′S(θ0)
−1G(θ0)}−1 and S(θ0) = V ar[f(v, θ0)];

10 (iii) the

two-step GMM and IM/GEL estimators achieve the semi-parametric asymptotic efficiency

bound for estimation of θ0 based on (1), see Chamberlain (1987).

While the first-order asymptotic properties of the estimators are the same, Newey and

Smith (2004) show that their second-order properties are different. Specifically, they show

that IM/GEL estimators have fewer sources of second-order bias than GMM, and that

within the IM/GEL class, EL has the fewest sources of bias. This suggests that EL should

10The “two-step” GMM estimator is calculated using Wn that converges in probability to S(θ0). Hansen
(1982) shows this choice leads to GMM estimator based on (1) with the smallest variance in large samples.

Its name comes from the fact that to implement this GMM estimator requires Wn = Ŝ−1 where Ŝ
p
→ S, and

so a consistent estimator of θ0 to form Ŝ. As noted by Hansen, this can be achieved by the following two-step
estimation procedure: estimate θ0 by GMM with a sub-optimal choice of Wn and use this to construct Ŝ,
then re-estimate θ0 by GMM with Wn = Ŝ−1.
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exhibit the smallest second-order bias.11 These differences can be traced to the form of the

first order conditions associated with GMM and IM/GEL. Newey and Smith (2004) show

that in each case the first order conditions take the form

(Jacobian)′ × (variance of sample moment)−1 × sample moment = 0,

with the differences in the estimators arising from how the Jacobian and variance terms

are estimated. EL uses the probabilities {π̂i} to construct efficient estimators for both; the

other members of the GEL class use their associated probabilities to construct an efficient

estimator for the Jacobian but use an inefficient estimator for the the variance term; and

GMM uses an inefficient estimator for both.

3 The pseudo-panel data approach to estimation based on

repeated cross-section data

In this section, we expand on the pseudo-panel approach to estimation of linear regression

models based on repeated cross-section data. For ease of exposition, we present this discus-

sion in the context of a specific example involving the relationship between an individual’s

level of education and subsequent earnings. More specifically, the estimation of the “returns

to education” that is, the impact of an additional year of education on wages.

To this end, suppose we have a repeated cross-section data set containing the values

of the log of hourly wages, y, and the number of years of education, ed, for cross-sections

of individuals sampled from a population in each of T consecutive years. We thus index

observations by the pair (j(t), t) where t denotes the year and j(t) denotes the jth individual

sampled in year t.

11See Andrews, Elamin, Hall, Kyriakoulis, and Sutton (2014) for further discussion of this issue in the
context of the model in Example 1 and an empirical illustration of where these differences are important
for estimation of a policy parameter in health economics.
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Suppose further that wages and education are related by the following model

yj(t),t = α + βedj(t),t + uj(t),t, (3)

where α, β are unknown parameters, and uj(t),t is an unobservable error. Within this

example, the key parameter of interest is β: 100β equals the implied percentage response

in wages to one more year of education. As in our panel data example above, the error is

assumed to have a composite form,

uj(t),t = aj(t) + wj(t),t. (4)

The component aj(t) is an individual-specific effect which captures unobserved characteris-

tics about individual j(t) that may affect the wage earned, and wj(t),t is the idiosyncratic

error. The unobserved characteristic, aj(t), captures such factors as innate ability of the

individual and government education policy at the time the individual was at school. Both

are correlated with education as well, and so aj(t) is a fixed effect. We assume that for any

individual j in the population the fixed effect is generated via

aj = αc(j) + a∗j (5)

where αc(j) is an unknown constant that depends on c(j), the birth cohort of individual j,

and a∗j is a mean-zero random variable that accounts for variation in the fixed effect across

individuals from the same birth cohort.

This specification can be justified in our example as follows. There is no reason to

suppose that the distribution of innate ability in the population has changed over time and

so the effect of this component on wages is captured by the constant α in (3), and the

remaining variation contributes to a∗j . However, government education policy has changed

over time and the systematic component of this change is captured by αc(j) with varia-

tion about this level also contributing to a∗j . Note this effect is indexed by the cohort of
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birth because this indicates the calendar years when the individual attended primary and

secondary education.

Notice the model cannot be estimated using the moment condition in Example 2 because

we cannot construct the first time differences of the variables for an individual as we do

not observe the same individuals in each year. Instead, Deaton (1985) proposes creating

a “pseudo-panel” data set from the original repeated cross-section data by constructing

(birth) cohort-time averages leading to the estimation of the regression model

ȳc,t = “cohort specific intercept” + β ēdc,t + “error”, (6)

where ¯( · )c,t represents the sample mean value of ( · ) over all j(t) for which c(j(t)) = c.

This is an example of a grouped-data estimation in which the number of groups is G = CT ,

where C is the total number of birth cohorts and T is the total number of time periods.12

As noted by Angrist (1991), Durbin (1954) shows that OLS regression with group means is

equivalent to Two Stage Least Squares (2SLS) estimation using individual level data with

regressors on the first stage being a complete set of dummy variables for group membership.

Since 2SLS is a GMM estimator,13 OLS estimation based on group-mean data can be viewed

as an estimation method based on population moment conditions.14

To present the moment conditions in question, we introduce a group index

g = (T − 1)c + t, c = 1, 2, . . .C; t = 1, 2, . . .T.

12For ease of exposition, we assume each time period contains observations from each cohort.
13For example, see Hall (2005) Chapter 2.
14We note that Deaton (1985) does not propose inference based on the OLS estimator but instead a

modified version referred to as the “Errors in Variables”(EVE) estimator. This is because Deaton (1985)
considers asymptotics in which the number of groups gets large but the number of observations in each
group is finite. Within that framework, Deaton (1985) shows the OLS estimator is inconsistent. However, if
the number of groups is fixed and the number of observations in each group becomes large - the framework
we adopt below - then OLS is consistent, see Angrist (1991). See Devereux (2007) for analysis of the second
order properties of the EVE.
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Now define the group level model

yg = x′
gθ0 + ug (7)

where yg is a random variable modeling the log wage for members of group g, xg,i =
[

I(1)
g , I(2)

g , . . . , I(C)
g , edg

]′

, edg denotes the number of years for education for a member of

group g, I(c)
g,i is an indicator variable that takes the value 1 if group g involves individuals

born in cohort c, θ0 is the parameter vector whose first p−1 elements are the cohort specific

intercepts and whose last element is β (here p = C + 1). Following the reasoning in the

previous paragraph, OLS estimation based on group-mean data is equivalent to estimation

of the group-level model in (7) based on the information that

E[ug(θ0)] = 0, g = 1, 2, . . .G, (8)

where ug(θ) = yg − x′
gθ. In this case, identification requires not only that p = dim(θ) < G

but also that the data follow a different distribution in each group. To demonstrate why

this is the case, it is sufficient to consider the case of C = T = 2 so that G = 4. Expressing

(8) as a single 4 × 1 population moment condition with gth element E[ug(θ0)] = 0, the

Jacobian is


















1 0 E[ed1]

1 0 E[ed2]

0 1 E[ed3]

0 1 E[ed4]



















and this matrix must have rank equal to three for θ0 to be identified.15 For this rank

condition to hold, it must be that E[ed1] 6= E[ed2] or E[ed3] 6= E[ed4].

As can be seen from the preceding discussion, the pseudo-panel approach to estimation

with repeated cross-section data involves dividing the population into groups, and basing

estimation on group-specific moment conditions. Thus to develop IM estimators for this

15As the model is linear in θ0, identification and first-order identification are equivalent.
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kind of estimation scenario, we need to extend the IM framework of Section 2 to cover

the case in which the the population is heterogeneous and consists of homogeneous sub-

populations. This is the topic of the next section.

4 IM estimation with group-specific moment conditions

In this section we extend the IM framework to the case in which the population is het-

erogeneous consisting of a finite number of homogeneous sub-populations. In view of the

discussion in the previous section, we refer to these sub-populations as “groups”.

We first describe the group-data structure. It is assumed that there are G groups and

for each group g, the model involves random variables vg with probability measure µg and

sample space Vg. We impose the following condition on the groups.

Assumption 1 (i) vg is independent of vh for all g, h = 1, 2, . . . , G and g 6= h; (ii) there

is a random sample of size ng on vg for each g.

Note that Assumption 1 states that observations are independent both across and within

groups. This rules out many forms of clustering, as for example in worker-firm data. It

also rules out serial correlation if g is defined on time.

We further assume that the model implies that each group satisfies a set of population

moment conditions involving fg : Vg × R
qg .

Assumption 2 E[fg(vg, θ0)] = 0 where θ0 ∈ Θ ⊂ R
p, for g = 1, 2, . . . , G.

Note that the moment conditions are allowed to vary by g. This may happen because

the functional form of the moment conditions is the same across g but they are evaluated

at group specific parameters that is,

fg(vg, θ0) = f(vg, γg(ψ), β)

where θ = (ψ′, β′)′. Our example in Section 3 fits this structure with ψ = (ψ1, ψ2, . . . , ψC)

and ψc denoting the intercept for cohort c. However, the key element is that certain

14



parameters appear in the population moment conditions associated with more than one

group.

To present the IM estimator, we need the following additional notation. Let v =

vec(v1, v2, . . . , vg) and µ = µ1 × µ2 × . . . µG; note that Assumption 1 implies µ is the

probability measure of v. Now define the following sets of measures: M, the set of all

possible probability measures for v;

P(θ) =

{

P = P1 × P2 × . . .× PG ∈ M :

∫

fg(vg, θ)dPg = 0, g = 1, 2, . . .G

}

,

the set of all measures for v which satisfy the population moment conditions in each group

for a given value of θ;

P = ∪θ∈ΘP(θ),

the set of all measures for v which satisfy the population moment condition in each group

for some θ ∈ Θ. As for the homogenous population case in Section 2, estimation is based

on the principle of finding the value of θ that makes P(θ) as close as possible to true

distribution of data and that this approach is operationalized using discrete distributions.

To this end, suppose we have a random sample on vg consisting of observations {vg,i; i =

1, 2, . . .ng}. The total sample size is then N =
∑G

g=1 ng. Define πg,i = P (vg = vg,i), and

P̂g = [πg,1, πg,2, . . . , πg,ng ], P̂ = [P̂1, P̂2, . . . , P̂G]. Assuming no two sample outcomes are the

same, the empirical distribution of the data is: µ̂g,i = n−1
g ; let µ̂g = n−1

g ι′ng
where ιng is a

ng × 1 vector of ones, µ̂ = [µ̂1, . . . µ̂G].

The Info-metric estimator based on group-specific moment conditions (IM-GMC) is

then defined to be:

θ̂IM = arg inf
θ∈Θ

DN (θ, µ̂) (9)
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where

DN(θ, µ̂) = inf
P̂ (θ)∈P̂(θ)

D(P̂ (θ) ‖ µ̂),

P̂(θ) = [P̂1(θ), P̂2(θ), . . . , P̂G(θ)],

P̂g(θ) =

{

P̂g : πg,i > 0,

ng
∑

i=1

πg,i = 1,

ng
∑

i=1

πg,if(vg,i, θ) = 0

}

,

and the distance measure is:

D(P̂ (θ) ‖ µ̂) = N−1
G

∑

g=1

ng
∑

i=1

φ(ngπ̂g,i).

The natural choices for φ( · ) are the same as for the IM estimator and the specific choices

listed in Section 2 would give grouped-data versions of EL, ET and CUE.

AHKL define the GEL-GMC estimator of θ0 as,

θ̂GEL = argmin
θ∈Θ

sup
λ∈ΛN

G
∑

g=1

ng
∑

i=1

[

ρ
(

λ′gfg,i(θ)
)

− ρ(0)
]

/N, (10)

where fg,i(θ) = fg(vg,i, θ), ρ(.) is a concave function on its domain A, an open interval

containing 0, ρ0 = ρ(0) and λ = (λ1, λ2, . . .λG)′ is vector of auxiliary parameters vector

restricted so that with probability approaching 1, λ′gfg(vg,i, θ) ∈ A for all (θ′, λ′)′ ∈ Θ×ΛN

and g = 1, 2 . . .G.16 The auxiliary parameter λg is the Lagrange Multiplier on the constraint

that the group g moment condition holds in the IM formulation (9).

We find the info-metric (primal) approach more intuitively appealing because it is for-

mulated explicitly in terms of the population moment conditions placing restrictions on the

distribution of the data. However, GEL approach is often more appealing for the purposes

of developing the asymptotic analysis of the estimator.

While either method can be used to calculate the estimator, the primal (IM-GMC) and

dual (GEL-GMC) approaches have differing computational requirements. In the primal ap-

16Setting ρ( · ) equal to log[1 − ( · )], −exp( · ) and ρ0 − ( · ) − 0.5( · )2 yields grouped-data versions of EL,
ET and CUE respectively.
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proach, the optimization is over both the probabilities {π̂g,i; i = 1, 2, . . .ng; g = 1, 2, . . .G}

and θ. In the dual approach, the optimization is over λ and θ.17 While the latter involves

fewer parameters, the associated optimizations can be problematic as we now discuss. The

computation is performed by iterating between the so-called inner and outer loops. The

inner loop involves optimization over λ for given θ that is,

λ̂ (θ) = arg sup
λ∈ΛN

G
∑

g=1

ng
∑

i=1

[

ρ
(

λ′gfg,i(θ)
)

− ρ(0)
]

/N,

and the outer loop involves optimization over θ given λ that is,

θ̂ = argmin
θ∈Θ

G
∑

g=1

ng
∑

i=1

[

ρ
(

λ̂g(θ)
′fg,i(θ)

)

− ρ(0)
]

/N.

While the inner loop is well suited to gradient methods because ρ(·) is strictly concave,

the outer loop can be more problematic.18 In terms of calculating the estimators in our

context using numerical routines in MATLAB, we have found optimization associated with

the primal approach far more reliable because, due to the convexity of the primal approach,

estimation is robust to the initial parameter starting values provided to the optimizer.19 In

contrast, the solution to the min-max problem in the GEL approach is extremely sensitive to

starting values; in cases where the information content of the population moment conditions

is low, the optimizing routine would often fail to move away from the initial values.

5 Statistical properties and inference

In this section, we describe the asymptotic properties of the IM/GEL-GMC estimator and

its associated inference framework. To simplify the exposition, we consider the case in

17The probabilities can be estimated from estimators of λg, θ and the data.
18For example, see Guggenberger (2008).
19Specifically, in the simulations reported in Section 5, the procedure fmincon was used to enforce the

constraints in equation (9). Convergence time is greatly improved by providing analytical form for the
Jacobian and Hessian of the IM objective function.
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Section 3 where the group level model is:

yg = x′
gθ0 + ug, (11)

where xg = [1, r′g]
′, rg is a k × 1 vector of observable random variables, and yg and ug are

scalar random variables. Estimation is based on the information that

E[ug(θ0)] = 0, g = 1, 2, . . .G. (12)

This model fits into the framework of Section 4 with vg = (yg, r
′
g)

′ and fg(vg, θ) = yg−x′
gθ.

It is assumed that p = dim(θ) < G.

In addition to Assumption 1, the data must satisfy certain regularity conditions but for

brevity these are suppressed here.20 Define σ2
g = V ar[ug], and Bg = E[xg]. Samples are

assumed to satisfy:

Assumption 3 ng is deterministic sequence such ng/N → νg ∈ (0, 1) as N → ∞.

Notice this assumption implies the sample size for each group increases with N and so

become asymptotically large. One consequence of this assumption is that the Weak Law

of Large Numbers (WLLN) and Central Limit Theorem (CLT) can be used to deduce the

behaviour of the group averages. Let {xg,i}ng

i=1 and and {ug,i}ng

i=1 be random draws from the

distributions of xg and ug respectively, ¯( · )g = n−1
g

∑ng

i=1( · )g,i, ¯( · ) = vec[ ¯( · )1, ¯( · )2, . . . , ¯( · )G]

and ν̂N = diag(n1/N, n2/N, . . . , nG/N ). Then under Assumptions 1 and 3, and assuming

(12) holds, we can invoke the WLLN and the CLT respectively to deduce:

(ng/N )x̄g
p→ νgBg , g = 1, 2, . . .G (13)

N 1/2ν̂N ū
d→ N (0G, Ψu) (14)

where 0G denotes the G× 1 null vector, Ψu = diag(ν1σ
2
1, ν2σ

2
2 , . . . , νGσ

2
G).

20See Khatoon (2014) and AHKL.
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It can be shown using similar arguments to Newey and Smith (2004) that θ̂ is consistent

for θ0.
21. Using this consistency property, it is possible to take a Mean Value expansion

of the first order conditions of the optimization from which can be deduced the following

result.

Proposition 1 Under Assumptions 1 and 3 and certain other regularity conditions, we

have:






√
N (θ̂ − θ0)
√
Nλ̂







d→ N













0k

0G






,







Vθ 0

0 Vλ












,

where Vθ = (B′Ψ−1
u B)−1, Vλ = Ψ−1

u −Ψ−1
u BVθB

′Ψ−1
u , and B = [ν1B1, ν2B2, . . . , νGBG]′.

Proposition 1 implies that
√
N(θ̂ − θ0) and

√
Nλ̂ converge to normal distributions and

are asymptotically independent.

Within this framework, two types of inference are naturally of interest: inference about

θ0 and tests of the validity of the population moment condition upon which the estimations

rests. We now discuss these in turn.

An approximate 100a% confidence interval for θ0,k is given by

(

θ̂k ± z1−a/2se(θ̂k)
)

(15)

where θ̂k is the kth element of θ̂, z1−a/2 is the 100(1 − a/2)th percentile of the stan-

dard normal distribution, se(θ̂k) is the kth main diagonal element of V̂θ = (B̂Ψ̂−1
u B̂)−1,

B̂ = ν̂N [x̄1, x̄2, . . . , x̄G]′, Ψ̂u = ν̂Ndiag(σ̂
2
1, σ̂

2
2, . . . σ̂

2
G), σ̂2

g =
∑ng

i=1 π̂g,i(yg,i − x′g,iθ̂)
2, and

{yg,i, xg,i}ng

i=1 are the sample realizations in group g.

As is apparent from the discussion in Section 3, the estimation exploits the information

that the moment condition holds in the population. Typically, this moment condition is

derived from some underlying economic and/or statistical model and so it is desirable to

test whether the data is consistent with this moment condition. Within the info-metric

21Formal proofs of all results are omitted for brevity but are presented in Khatoon (2014) for the model
in this section and in AHKL for the general model described in Section 4.
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framework this can be done in three ways. First, using Proposition 1, we can base inference

on the Lagrange Multipliers λ̂. Inspection reveals Vλ is singular, being of rank G− p. One

option is to use a generalized inverse of Vλ to construct the test, but following Imbens, Spady,

and Johnson (1998) we propose using the asymptotically equivalent and computationally

more convenient version of the LM statistic22

LM = Nλ̂′Ψ̂uλ̂. (16)

Second, inference can be based directly on the estimated sample moments ū(θ̂). While the

optimization forces the weighted sample moments,
∑ng

i=1 π̂g,iug,i(θ̂), to zero, the estimated

sample moments n−1
g

∑ng

i=1 ug,i(θ̂) are not so constrained but should be approximately zero

if the moment condition is valid. This leads to the Wald statistic

Wald = N{ν̂ū(θ̂)}′Ψ̂−1
u ν̂ū(θ̂). (17)

Finally, inference can be based on the optimand. Within the GEL approach, this approach

leads to the statistic:

LRGEL = −2

G
∑

g=1

ng
∑

i=1

[

ρ
(

λ̂gug,i(θ̂)
)

− ρ(0)
]

, (18)

in which the unconstrained version does not impose the population moment condition and

so amounts to λg = 0 - and hence λgug,i = 0 - in the GEL-GMC framework.

The Wald and LM are all easily calculated with both the primal and dual approach to

estimation, but while the LRGEL is a natural side product of the dual approach, it is not

so with the primal approach. For the latter, more convenient test statistics based on the

primal optimand are as follows. If the estimation is performed using EL then, following Qin

and Lawless (1994), a suitable statistic is based on the difference between the log likelihood

evaluated at the constrained probabilities and the unconstrained probabilities. Adapting

22Imbens, Spady, and Johnson (1998) report that this version has better finite sample properties in their
simulation study than the version based on the generalized inverse of Vλ. See also Imbens (2002).
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their approach to our setting yields the test statistic:

LREL = −2
G

∑

i=1

ng
∑

i=1

ln(ngπ̂g,i). (19)

If the estimation is based on ET then, following Imbens, Spady, and Johnson (1998), a

suitable statistic can be based on the Kullback-Liebler distance between constrained and

unconstrained probabilities. In our setting, this approach yields the test statistic

KLIC −RET = 2

G
∑

i=1

ng
∑

i=1

ngπ̂g,i{ln(ngπ̂g,i)}. (20)

The following proposition gives the limiting distributions of the above tests under the null

hypothesis that the moments are valid.23

Proposition 2 If Assumptions 1 and 3 and certain other regularity conditions hold then:

(i) LM , Wald, and LRGEL are asymptotically equivalent and they all converge in distri-

bution to χ2
G−p as N → ∞ (ii) LREL and KLIC −R converge in distribution to χ2

G−p as

N → ∞.

The first order asymptotic properties above are the same for all members of the IM/GEL

class described in Section 3. However, the second order properties are different. Newey

and Smith (2004) derive the second order bias of GEL estimators for the case described

in Section 2. Their approach is based on taking a third order expansion of the first or-

der conditions of GEL estimation and can be adapted to derive analogous results for the

Im/GEL-GMC estimator to yield the following result.24

Proposition 3 Under Assumptions (1) and (3) and certain other regularity conditions,

Bias(θ̂GEL) = −Ξ

[

B1 +

(

1 +
ρ3(0)

2

)

B2

]

/N, (21)

23Part (i) is proved in Khatoon (2014) and part (ii) can be proved by adapting the arguments in Qin and
Lawless (1994) (for EL) and Imbens, Spady, and Johnson (1998) (for ET) to our groped-data context.

24See Khatoon (2014).
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where B1 = diag [ Ξ′Mxu ], B2 = M
(3)
u diag(Vλ), Ξ = VθB

′Ψ−1
u , (here) Vθ = (B′Ψ−1

u B)−1,

Mxu is a p × G matrix gth column νgE[ugxg], M
(3)
u = diag(ν1µ

(3)
1 , ν2µ

(3)
2 , . . . , νGµ

(3)
G ),

µ
(3)
g = E[u3

g], and ρ3( ? ) = ∂3ρ(a)/∂a3|a=?.

As can be seen, the second bias depends on ρ( · ) and so is potentially different for different

members of the GEL class of estimators. Specializing the bias formula to the three leading

cases, the biases of EL, ET and CUE are given respectively by −ΞB1/N , −Ξ
(

B1 + 1
2B2

)

/N

and −Ξ (B1 + B2) /N .25 So it can be seen that in general, as in Newey and Smith’s (2004)

analysis, EL has fewer sources of bias than the other two. The formula reveals that in

our model the sources of the bias are correlation between ug and xg and asymmetry of the

distributions of {ug}ng

i=1. Note that within our repeated cross-section model of Section 3,

ug and xg are correlated through the stochastic part of the fixed effect. If E[u3
g] = 0 for all

g then the bias is the same for all three estimators.

It is natural to consider whether the IM/GEL approach has similar advantages over

GMM in the case of grouped-specific moment conditions as those described for the homo-

geneous population case in Section 2. For the model in this section, the GMM estimator

is

θ̃ = argminθ∈Θū(θ)
′WN ū(θ), (22)

Under our assumptions, the optimal choice of weighting matrix, WN , is one that converges

in probability to Ψ−1
u and with this choice it is straightforward to show that N 1/2

(

θ̃ − θ0

)

has the same limiting distribution as
√
N (θ̂ − θ0) (given in Proposition 1). However, once

again the second order properties of the GMM and IM/GEL-GMC estimators differ.

Proposition 4 If Assumptions 1 and 3 and certain other regularity conditions hold then

Bias(β̂GMM ) = [VθA− Ξ(B1 + B2 + B3)]/N,

where A = Mxudiag(Vλ), B3 is a term that depends on Mxu and the difference between the

25ρ3(0) equals −2, −1 and 0, respectively for EL, ET and CUE.
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first and second step weighting matrices.26

A comparison of Propositions 3 and 4 indicates that the grouped-data GMM estima-

tor has more sources of bias than the corresponding GEL-GMC estimator. One of these

additional sources is attributable to the two-step nature of GMM estimation and arises

if a sub-optimal weighting matrix is used on the first step. A similar finding is reported

in Newey and Smith (2004), and they argue that these extra sources of bias are likely to

translate to an estimator that exhibits more bias in finite samples.

These results can be used to compare GEL-GMC to the pseudo-panel data approach of

regression based on group averages.27 As noted in Section 3, this pseudo-panel approach

amounts to estimation of the individual level model via 2SLS using group dummies and is

therefore a GMM estimator based on the moments in (12). 2SLS is only equivalent to two-

step GMM if the variance of ug is the same for all g, and so is only as efficient asymptotically

as GEL-GMC under that condition. Even then, the arguments above indicate that finite

sample inferences based on the the pseudo-panel approach are likely less reliable than those

based on GEL-GMC. In the remainder of this section, we explore whether is the case in

our setting via a small simulation study.

Artificial data generated for groups g = 1, 2, . . . , G via:

yg = βrg + δ + ug (23)

rg = 12 +

G
∑

j=2

I(j)
g δj + ag (24)

where β = 0.05, E[ug, ag] = 0, V ar[ug] = σ2
u, V ar[ag] = σ2

a, Cov[ug, ag] = ρσuσa, and

I(j)
g is an indicator variable that takes the value one if j = g. For the results reported

below, we set the parameter values as follows: β = 0.05, σ2
u = 0.2, σ2

a = 3.38, σu,a = ρσuσa

with ρ = 0.2, 0.5, 0.9, and δ2 = 0.9, δj = δj−1 + 0.9 for j = 3, . . .G. Notice that within

this design, rg is correlated with ug. We report results for the cases where (ug, ag)
′ has a

26See Khatoon (2014) for details of this term, the details of which are omitted as they are not relevant to
the exposition.

27The discussion in the paragraph does not cover the EVE estimator, see footnote 14.

23



bivariate normal and a bivariate Student-t distribution with 7 degrees of freedom.

We report results for different numbers of groups and sample sizes. Specifically, we

consider the scenarios G = 3, 4, 6, 8, N = 96, 144, 312 with sample size within each group

determined via ng = N/G for all g. Note that within this scheme, there is an inverse

relationship between the number of groups and the number of observations within each

group. This enables us to examine whether the accuracy of the asymptotic theory depends

on just N per se or on the number of groups these observations are spread across. Ten

thousand replications are performed for each parameter configuration.

Estimation is based on the moment conditions,

E[yg − x′
gθ0] = 0, for g = 1, 2, . . .G.

where xg = [1, rg]
′, θ = (δ, β)′. We consider two versions of IM/GEL-GMC: the first,

denoted hereafter as EL, involves φ( · ) = −log( · ) and the second, denoted hereafter ET,

involves (φ( · ) = ( · )log( · ). We also consider estimation based on 2SLS and two-step GMM.

Specifically we report the following statistics: the mean of the simulated distributions of β̂;

the rejection frequency of the 5% approximate significance level test of H0 : β0 = 0.05 (its

true value) based on the t-statistic, β̂/s.e.(β̂);28the rejection frequency for LM and Wald

(both for EL and ET), LREL, KLIC − RET and the overidentifying restrictions test for

GMM.29

Before discussing the results, we note that there are reasons to expect that the finite

sample behaviour of GMM may be more sensitive to G than EL/ET. Specializing the result

in Proposition 4 to the model in our simulations then the second order bias of the GMM

estimator is:

Bias(β̂GMM ) =
(G− 3)σu,a

NR2
x,zσ

2
x

. (25)

28From Proposition 1 it follows that the t-statistic is distributed approximately as a standard normal
random variable in large samples.

29The GMM overidentifying restrictions is calculated as N times the minimand on the right-hand side
of (22). Like the other model specification tests, the overidentifying restrictions test converges to a χ2

G−p

distribution under the null hypothesis that the moments are valid.
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where R2
x,z is the population multiple correlation coefficient from the pooled (over g) regres-

sion of vg on z = [I(1)
g , I(2)

g , . . . , I(G)
g ] and σ2

x is the population variance of x. In contrast,

second order bias of the IM/GEL-GMC estimator is:

Bias(β̂GEL) = − σu,a

NR2
x,zσ

2
x

. (26)

Clearly the second order bias of GMM increases with G (for G > 3) but that of IM/GEL-

GMC is invariant to G.

Tables 1-3 report the results for the normal distribution for N equal to 96, 144 and

312 respectively, whereas Tables 4-6 report the results for the Student-t distribution. First

consider the bias. From (25), it can be seen that the GMM estimator is second order

unbiased in this case, and this is approximately true in the simulations. The bias formulae

also indicate that the second order bias of IM/GEL-GMC is unaffected by the number of

groups but that of the grouped GMM estimator increases with the number of groups. This

is again what we find: interestingly, the GMM estimator exhibits more bias when the data

come from the Student-t distribution whereas the bias of the IM/GEL-GMC estimators is

comparable for both distributions. All three t-statistics show size distortion as G increases

and/or ρ increases. The GMM t-tests have empirical size closer to the nominal size for low

degrees of endogeneity (ρ = 0.2), but the IM/GEL-GMC t-tests have empirical size closer

to the nominal size for high degrees of endogeneity (ρ = 0.9). For the largest sample size, all

the empirical sizes are close, albeit systematically above, the nominal level. Now consider

the overidentifying restrictions tests. The G-IM Wald tests exhibit empirical size very close

to the nominal level in all settings, the GMM test has rejects slightly more than it should,

but the other tests reject far too often in the smaller samples (N = 96, 144). As would

be expected, the degree of over-rejection is reduced as the sample size increases; however,

even in the larger sample size the LREL, KLIC−RET tests over reject by 1.5-2.5% in the

normal distribution case and by 2.5 and 3.1% in the Student-t distribution case, and the

LM tests over reject by between 2.3 and 8.3%.
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While our simulation study is limited, the results provide some interesting insights into

the comparative properties of the estimators. If the degree of overidentification is small and

the degree of endogeneity low then there is little to choose between the estimators. However,

if the degree of overidentification is relatively large and/or the degree of endogeneity is high

then the EL version of IM/GEL-GMC yields the most reliable inferences.

6 Concluding remarks

In this paper, we have introduced an IM estimator for the parameters of statistical models

using information in population moment conditions that hold at group-level. The IM esti-

mation can be viewed as the primary approach to a constrained optimization. The estima-

tors can also be obtained via the dual approach to this optimization, known as Generalized

Empirical Likelihood (GEL). In a companion paper (AHKL), we provide a comprehensive

framework for inference based GEL with the grouped specific moment conditions. In this

chapter, we compare the computational requirements of the primary and dual approaches.

We also describe an inference framework based IM/GEL estimators. Using analytical argu-

ments and a small simulation study, it is shown that the IM/GEL approach to estimation

based on grouped specific moment conditions yields more reliable inference in finite samples

than certain extant methods.
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Table 1: Normal distribution: results for beta, t test based on conventional standard error, model specification test rejection

rates

N=96 ρua =0.2 ρua =0.5 ρua =0.9

G=3 G=4 G=6 G=8 G=3 G=4 G=6 G=8 G=3 G=4 G=6 G=8

EL beta 0.0446 0.0475 0.0488 0.0493 0.0378 0.0445 0.0482 0.0489 0.0321 0.0418 0.0465 0.0481

ET beta 0.0451 0.0475 0.0488 0.0493 0.0383 0.0446 0.0483 0.0489 0.0321 0.0419 0.0465 0.0481

2SLS beta 0.0500 0.0513 0.0518 0.0517 0.0495 0.0539 0.0555 0.0546 0.0505 0.0581 0.0591 0.0584

GMM beta 0.0499 0.0513 0.0518 0.0517 0.0495 0.0538 0.0555 0.0546 0.0507 0.0581 0.0590 0.0583

EL rej 0.0451 0.0639 0.0854 0.1002 0.0592 0.0663 0.0910 0.1001 0.0806 0.0679 0.0782 0.0942

ET rej 0.0449 0.0633 0.0839 0.0961 0.0588 0.0656 0.0882 0.0967 0.0795 0.0680 0.0765 0.0920

GMM rej 0.0357 0.0491 0.0656 0.0788 0.0611 0.0662 0.0881 0.0957 0.1095 0.1080 0.1221 0.1302

GMM J-test 0.0432 0.0471 0.0527 0.0493 0.0564 0.0572 0.0568 0.0554 0.0743 0.0803 0.0662 0.0610

EL WALD 0.0380 0.0405 0.0479 0.0498 0.0439 0.0466 0.0485 0.0529 0.0478 0.0521 0.0465 0.0457

ET WALD 0.0378 0.0400 0.0479 0.0495 0.0436 0.0463 0.0481 0.0521 0.0477 0.0519 0.0463 0.0440

EL LM 0.0410 0.0593 0.1213 0.2212 0.0485 0.0628 0.1217 0.2207 0.0533 0.0713 0.1209 0.2196

ET LM 0.0498 0.0774 0.1482 0.2555 0.0581 0.0781 0.1516 0.2550 0.0620 0.0893 0.1516 0.2525

EL LR 0.0421 0.0522 0.0823 0.1235 0.0485 0.0571 0.0821 0.1266 0.0524 0.0649 0.0822 0.1215

ET LR 0.0439 0.0574 0.0914 0.1352 0.0509 0.0603 0.0924 0.1379 0.0547 0.0694 0.0926 0.1330
a EL beta & ET beta denote the simulated means of the G-IM estimator using respectively φ( · ) = −log( · ) & φ( · ) = ( · )log( · ); GMM

(2SLS) beta are the corresponding figures for the two-step GMM (2SLS) estimator; the true value value is β0 = 0.05.
b EL rej & ET rej are the empirical rejection rates of the tests of H0 : β0 = 0.05 based on the G-IM estimators using φ( · ) = −log( · ) &

φ( · ) = ( · )log( · ) respectively; GMM rej is the corresponding figure based on the two-step GMM estimator; nominal 5% rejections rates
c GMM J-test denotes the empirical rejection rate for the GMM overidentifying restrictions test, see footnote 29; EL (ET) Wald & EL (ET)

LM denote the corresponding figure for the Wald test in (17) & (16) respectively with φ( · ) = −log( · ) (φ( · ) = ( · )log( · )); EL LR denotes
the corresponding figure based on LREL in (19); ET LR denotes the corresponding figure based on KLIC − RET in (20); nominal
rejection rate is 5%.
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Table 2: Normal distribution: results for beta, t test based on conventional standard error, model specification test rejection
rates

N=144 ρua =0.2 ρua =0.5 ρua =0.9

G=3 G=4 G=6 G=8 G=3 G=4 G=6 G=8 G=3 G=4 G=6 G=8

EL beta 0.0479 0.0483 0.0498 0.0500 0.0431 0.0474 0.0489 0.0494 0.0398 0.0447 0.0480 0.0485

ET beta 0.0479 0.0483 0.0498 0.0500 0.0431 0.0474 0.0489 0.0494 0.0398 0.0447 0.0480 0.0485

2SLS beta 0.0505 0.0506 0.0517 0.0514 0.0493 0.0531 0.0538 0.0533 0.0505 0.0549 0.0565 0.0555

GMM beta 0.0505 0.0507 0.0517 0.0515 0.0494 0.0531 0.0538 0.0533 0.0504 0.0550 0.0566 0.0555

EL rej 0.0487 0.0562 0.0736 0.0786 0.0510 0.0611 0.0716 0.0806 0.0645 0.0643 0.0675 0.0800

ET rej 0.0487 0.0554 0.0728 0.0777 0.0506 0.0615 0.0711 0.0793 0.0646 0.0641 0.0669 0.0793

GMM rej 0.0404 0.0462 0.0617 0.0668 0.0523 0.0641 0.0761 0.0795 0.0852 0.0904 0.0951 0.1059

GMM J-test 0.0537 0.0547 0.0492 0.0488 0.0546 0.0517 0.0563 0.0492 0.0667 0.0683 0.0631 0.0630

EL WALD 0.0488 0.0516 0.0452 0.0464 0.0481 0.0439 0.0508 0.0459 0.0505 0.0489 0.0466 0.0497

ET WALD 0.0485 0.0514 0.0449 0.0463 0.0480 0.0435 0.0505 0.0457 0.0505 0.0488 0.0463 0.0495

EL LM 0.0500 0.0574 0.0835 0.1362 0.0492 0.0530 0.0884 0.1288 0.0515 0.0574 0.0846 0.1401

ET LM 0.0564 0.0732 0.1117 0.1745 0.0555 0.0677 0.1188 0.1673 0.0596 0.0733 0.1145 0.1786

EL LR 0.0508 0.0568 0.0672 0.0884 0.0499 0.0505 0.0722 0.0861 0.0528 0.0559 0.0695 0.0944

ET LR 0.0529 0.0610 0.0750 0.0997 0.0519 0.0537 0.0810 0.0952 0.0542 0.0599 0.0771 0.1068
a See notes to Table 1
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Table 3: Normal distribution: results for beta, t test based on conventional standard error, model specification test rejection
rates

N=312 ρua =0.2 ρua =0.5 ρua =0.9

G=3 G=4 G=6 G=8 G=3 G=4 G=6 G=8 G=3 G=4 G=6 G=8

EL beta 0.0490 0.0496 0.0498 0.0499 0.0469 0.0490 0.0493 0.0499 0.0452 0.0472 0.0490 0.0493

ET beta 0.0490 0.0496 0.0498 0.0499 0.0469 0.0490 0.0493 0.0499 0.0452 0.0472 0.0490 0.0493

2SLS beta 0.0501 0.0507 0.0508 0.0507 0.0495 0.0518 0.0516 0.0518 0.0501 0.0521 0.0531 0.0527

GMM beta 0.0501 0.0507 0.0508 0.0507 0.0495 0.0518 0.0517 0.0519 0.0501 0.0521 0.0531 0.0527

EL rej 0.0525 0.0559 0.0614 0.0624 0.0499 0.0581 0.0597 0.0622 0.0539 0.0552 0.0595 0.0616

ET rej 0.0524 0.0564 0.0614 0.0619 0.0497 0.0581 0.0595 0.0608 0.0540 0.0555 0.0586 0.0598

GMM rej 0.0484 0.0514 0.0572 0.0578 0.0510 0.0589 0.0611 0.0644 0.0658 0.0703 0.0727 0.0732

GMM J-test 0.0502 0.0491 0.0500 0.0511 0.0509 0.0523 0.0488 0.0483 0.0599 0.0555 0.0559 0.0550

EL WALD 0.0483 0.0461 0.0480 0.0482 0.0477 0.0478 0.0451 0.0443 0.0511 0.0458 0.0475 0.0476

ET WALD 0.0483 0.0461 0.0480 0.0478 0.0477 0.0477 0.0449 0.0444 0.0511 0.0459 0.0473 0.0474

EL LM 0.0484 0.0478 0.0570 0.0723 0.0479 0.0508 0.0557 0.0698 0.0520 0.0475 0.0581 0.0730

ET LM 0.0529 0.0565 0.0753 0.1040 0.0525 0.0596 0.0759 0.1019 0.0560 0.0561 0.0767 0.1048

EL LR 0.0494 0.0488 0.0562 0.0638 0.0489 0.0519 0.0546 0.0628 0.0523 0.0491 0.0551 0.0651

ET LR 0.0510 0.0516 0.0612 0.0738 0.0504 0.0541 0.0590 0.0708 0.0533 0.0511 0.0617 0.0734
a See notes to Table 1
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Table 4: t7-distribution: results for beta, t test based on conventional standard error, model specification test rejection
rates

N=96 ρua =0.2 ρua =0.5 ρua =0.9

G=3 G=4 G=6 G=8 G=3 G=4 G=6 G=8 G=3 G=4 G=6 G=8

EL beta 0.0421 0.0481 0.0487 0.0492 0.0361 0.0424 0.0475 0.0484 0.0246 0.0367 0.0440 0.0465

ET beta 0.0421 0.0481 0.0487 0.0492 0.0363 0.0427 0.0476 0.0485 0.0249 0.0369 0.0442 0.0466

2SLS beta 0.0481 0.0537 0.0534 0.0528 0.0512 0.0575 0.0598 0.0584 0.0522 0.0628 0.0651 0.0637

GMM beta 0.0481 0.0538 0.0533 0.0528 0.0511 0.0573 0.0592 0.0579 0.0519 0.0625 0.0651 0.0634

EL rej 0.0536 0.0669 0.0829 0.0963 0.0568 0.0660 0.0842 0.1013 0.0619 0.0640 0.0783 0.0936

ET rej 0.0522 0.0642 0.0787 0.0914 0.0554 0.0630 0.0781 0.0946 0.0612 0.0625 0.0745 0.0880

GMM rej 0.0462 0.0576 0.0703 0.0770 0.0567 0.0611 0.0779 0.0850 0.0743 0.0774 0.0882 0.1003

GMM J-test 0.0553 0.0551 0.0529 0.0474 0.0583 0.0610 0.0562 0.0527 0.0712 0.0650 0.0605 0.0532

EL WALD 0.0481 0.0464 0.0448 0.0441 0.0493 0.0504 0.0496 0.0469 0.0553 0.0483 0.0482 0.0467

ET WALD 0.0477 0.0456 0.0440 0.0432 0.0486 0.0497 0.0482 0.0454 0.0545 0.0479 0.0477 0.0447

EL LM 0.0604 0.0840 0.1580 0.2817 0.0632 0.0876 0.1689 0.2876 0.0702 0.0886 0.1707 0.2910

ET LM 0.0692 0.0981 0.1777 0.2918 0.0706 0.1028 0.1863 0.2999 0.0783 0.1007 0.1912 0.3005

EL LR 0.0563 0.0658 0.0948 0.1445 0.0560 0.0695 0.0993 0.1460 0.0624 0.0670 0.1033 0.1466

ET LR 0.0579 0.0697 0.1006 0.1459 0.0577 0.0728 0.1040 0.1486 0.0638 0.0692 0.1082 0.1486
a See notes to Table 1
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Table 5: t7-distribution: results for beta, t test based on conventional standard error, model specification test rejection
rates

N=144 ρua =0.2 ρua =0.5 ρua =0.9

G=3 G=4 G=6 G=8 G=3 G=4 G=6 G=8 G=3 G=4 G=6 G=8

EL beta 0.0478 0.0477 0.0499 0.0501 0.0390 0.0466 0.0484 0.0479 0.0342 0.0416 0.0471 0.0474

ET beta 0.0478 0.0478 0.0499 0.0501 0.0391 0.0466 0.0485 0.0479 0.0343 0.0417 0.0472 0.0475

2SLS beta 0.0513 0.0517 0.0529 0.0529 0.0483 0.0556 0.0564 0.0544 0.0515 0.0584 0.0613 0.0593

GMM beta 0.0514 0.0516 0.0530 0.0527 0.0484 0.0558 0.0564 0.0542 0.0514 0.0585 0.0612 0.0589

EL rej 0.0531 0.0606 0.0714 0.0856 0.0531 0.0575 0.0721 0.0873 0.0596 0.0577 0.0664 0.0832

ET rej 0.0520 0.0588 0.0672 0.0839 0.0525 0.0562 0.0680 0.0831 0.0595 0.0561 0.0641 0.0793

GMM rej 0.0477 0.0534 0.0595 0.0729 0.0537 0.0570 0.0658 0.0786 0.0696 0.0663 0.0744 0.0829

GMM J-test 0.0495 0.0574 0.0498 0.0467 0.0529 0.0538 0.0528 0.0511 0.0633 0.0606 0.0602 0.0548

EL WALD 0.0462 0.0504 0.0463 0.0433 0.0480 0.0478 0.0464 0.0457 0.0525 0.0505 0.0481 0.0457

ET WALD 0.0460 0.0495 0.0453 0.0426 0.0473 0.0472 0.0464 0.0458 0.0525 0.0501 0.0475 0.0443

EL LM 0.0512 0.0714 0.1120 0.1859 0.0560 0.0657 0.1169 0.1932 0.0594 0.0715 0.1198 0.1884

ET LM 0.0582 0.0846 0.1340 0.2113 0.0609 0.0781 0.1395 0.2174 0.0650 0.0826 0.1402 0.2142

EL LR 0.0495 0.0631 0.0752 0.1040 0.0517 0.0570 0.0773 0.1094 0.0569 0.0618 0.0830 0.1007

ET LR 0.0505 0.0670 0.0794 0.1105 0.0526 0.0598 0.0836 0.1167 0.0581 0.0639 0.0878 0.1077
a See notes to Table 1
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Table 6: t7-distribution: results for beta, t test based on conventional standard error, model specification test rejection
rates

N=312 ρua =0.2 ρua =0.5 ρua =0.9

G=3 G=4 G=6 G=8 G=3 G=4 G=6 G=8 G=3 G=4 G=6 G=8

EL beta 0.0477 0.0506 0.0489 0.0504 0.0454 0.0495 0.0488 0.0495 0.0424 0.0452 0.0476 0.0487

ET beta 0.0477 0.0506 0.0489 0.0504 0.0454 0.0495 0.0487 0.0495 0.0425 0.0452 0.0477 0.0488

2SLS beta 0.0494 0.0524 0.0505 0.0516 0.0500 0.0540 0.0526 0.0528 0.0502 0.0535 0.0549 0.0547

GMM beta 0.0495 0.0525 0.0505 0.0516 0.0499 0.0541 0.0527 0.0527 0.0502 0.0536 0.0548 0.0546

EL rej 0.0503 0.0538 0.0591 0.0668 0.0503 0.0580 0.0630 0.0666 0.0543 0.0529 0.0580 0.0659

ET rej 0.0497 0.0530 0.0569 0.0630 0.0496 0.0573 0.0606 0.0635 0.0542 0.0521 0.0555 0.0643

GMM rej 0.0486 0.0500 0.0532 0.0596 0.0496 0.0569 0.0596 0.0622 0.0582 0.0582 0.0641 0.0682

GMM J-test 0.0500 0.0538 0.0537 0.0495 0.0500 0.0533 0.0551 0.0494 0.0495 0.0557 0.0527 0.0555

EL WALD 0.0474 0.0513 0.0494 0.0468 0.0476 0.0495 0.0515 0.0452 0.0459 0.0495 0.0465 0.0499

ET WALD 0.0472 0.0509 0.0490 0.0467 0.0473 0.0493 0.0512 0.0448 0.0459 0.0493 0.0458 0.0493

EL LM 0.0496 0.0571 0.0774 0.1006 0.0517 0.0557 0.0767 0.1027 0.0472 0.0571 0.0759 0.1063

ET LM 0.0556 0.0672 0.0981 0.1274 0.0543 0.0657 0.0950 0.1284 0.0518 0.0659 0.0931 0.1337

EL LR 0.0499 0.0554 0.0652 0.0709 0.0505 0.0543 0.0643 0.0735 0.0477 0.0551 0.0622 0.0749

ET LR 0.0509 0.0580 0.0688 0.0767 0.0506 0.0560 0.0675 0.0782 0.0478 0.0571 0.0649 0.0818
a See notes to Table 1
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